(1,5 điểm) Đo chiều cao từ mặt đất đến đỉnh cột cờ của cột cờ Hà Nội (Kỳ đài Hà Nội), người ta cắm hai cọc bằng nhau và cao \[1,5\] m so với mặt đất. Hai cọc này song song, cách nhau \[56\] m và thẳng hàng so với tim cột cờ (như hình vẽ). Đặt giác kế đứng tại và để ngắm đến đỉnh cột cờ, người ta đo được các góc lần lượt là \[11^\circ \] và \[15^\circ \] so với đường song song mặt đất.

a) Viết tỉ số lượng giác sin và tan của góc \(DAH\) theo \(AD,\,\,DH,\,\,AH.\)
(1,5 điểm) Đo chiều cao từ mặt đất đến đỉnh cột cờ của cột cờ Hà Nội (Kỳ đài Hà Nội), người ta cắm hai cọc bằng nhau và cao \[1,5\] m so với mặt đất. Hai cọc này song song, cách nhau \[56\] m và thẳng hàng so với tim cột cờ (như hình vẽ). Đặt giác kế đứng tại và để ngắm đến đỉnh cột cờ, người ta đo được các góc lần lượt là \[11^\circ \] và \[15^\circ \] so với đường song song mặt đất.

a) Viết tỉ số lượng giác sin và tan của góc \(DAH\) theo \(AD,\,\,DH,\,\,AH.\)
Quảng cáo
Trả lời:
Câu hỏi cùng đoạn
Câu 2:
b) Tính chiều cao của cột cờ (làm tròn đến chữ số thập phân thứ hai).
b) Tính chiều cao của cột cờ (làm tròn đến chữ số thập phân thứ hai).
Hướng dẫn giải
b) Đặt \[DH = x\,\,\left( {\rm{m}} \right)\], \[x > 0\].
Xét \[\Delta DHA\] vuông tại \[H\] có: \[\tan \widehat {DAH} = \frac{{DH}}{{HA}}\] nên \[HA = \frac{{DH}}{{\tan \widehat {DAH}}}\].
Xét \[\Delta DHB\] vuông tại \[H\] có: \[\tan \widehat {DBH} = \frac{{DH}}{{HB}}\] nên \[HB = \frac{{DH}}{{\tan \widehat {DBH}}}.\]
Ta có: \[HB - HA = AB\] suy ra \[\frac{{DH}}{{\tan \widehat {DBH}}} - \frac{{DH}}{{\tan \widehat {DAH}}} = 56\]
\[x\left( {\frac{1}{{\tan 11^\circ }} - \frac{1}{{\tan 15^\circ }}} \right) = 56\]
\[x = \frac{{56}}{{\frac{1}{{\tan 11^\circ }} - \frac{1}{{\tan 15^\circ }}}} \approx 39,65\].
Khi đó \[CD = CH + DH \approx 1,5 + 39,65 \approx 41,15\,\,\left( {\rm{m}} \right)\].
Vậy chiều cao cột cờ Hà Nội khoảng \[41,15\] m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \[\frac{x}{{x + 3}} - \frac{2}{{x - 3}} = \frac{{ - 2x - 6}}{{{x^2} - 9}}\]
\[\frac{{x\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} - \frac{{2\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{ - 2x - 6}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\]
\[x\left( {x - 3} \right) - 2\left( {x + 3} \right) = - 2x - 6\]
\[{x^2} - 5x - 6 = - 2x - 6\]
\[{x^2} - 3x = 0\]
\(x\left( {x - 3} \right) = 0\)
\(x = 0\) hoặc \(x - 3 = 0\)
\(x = 0\) (thỏa mãn) hoặc \(x = 3\) (không thỏa mãn).
Vậy phương trình đã cho có nghiệm là \(x = 0.\)Lời giải
Hướng dẫn giải
a) – Xét biểu thức \(A = \frac{{\sqrt x + 2}}{{\sqrt x - 4}}\).
Điều kiện xác định của biểu thức \(A\) và \(x \ge 0\) và \(\sqrt x - 4 \ne 0\) hay \(x \ge 0,\,\,x \ne 16.\)
– Xét biểu thức \[B = \frac{{\sqrt x - 2}}{{\sqrt x + 4}} - \frac{{10\sqrt x - 8}}{{16 - x}}\].
Với \(x \ge 0\), ta có:
⦁ \[16 - x = \left( {4 + \sqrt x } \right)\left( {4 - \sqrt x } \right) = - \left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)\].
⦁ \(x \ge 0\) nên \(\sqrt x \ge 0,\) suy ra \(\sqrt x + 4 > 0.\)
Điều kiện xác định của biểu thức \(B\) là \(x \ge 0\) và \(\sqrt x - 4 \ne 0\) hay \(x \ge 0,\,\,x \ne 16.\)
Vậy điều kiện xác định của biểu thức \(A\) và biểu thức \(B\) đều là \(x \ge 0,\,\,x \ne 16.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
