Câu hỏi:

23/12/2025 25 Lưu

(2,5 điểm) Cho đường tròn \(\left( {O;R} \right)\) và điểm \(A\) nằm ngoài đường tròn \(\left( O \right)\). Từ \(A\) vẽ hai tiếp tuyến \(AB\)\(AC\) của đường tròn \(\left( O \right)\) (\(B,C\) là hai tiếp điểm). Gọi \(H\) là giao điểm của \(OA\)\(BC.\) Từ \(B\) vẽ đường kính \(BD\) của \(\left( O \right)\), đường thẳng \(AD\) cắt \(\left( O \right)\) tại \(E\) (\(E\) khác \[D\]).

a) Chứng minh rằng \(OA \bot BC\) tại \(H\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Chứng minh rằng \(OA \bot BC\) tại \(H\). (ảnh 1)

a) Xét đường tròn \[\left( O \right)\] có: \[AB,AC\] lần lượt là tiếp tuyến tại \[B,C\] nên \[AB = AC\] (tính chất hai tiếp tuyến cắt nhau) .

Suy ra \[A\] thuộc đường trung trực của \[BC\].

\[OB = OC = R\] nên \[O\] thuộc đường trung trực của \[BC\]

Do đó \[OA\] là đường trung trực của \[BC\] nên \[OA \bot BC\] tại \[H\].

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh \[\widehat {ABE} = \widehat {ADB}\]\(AE.AD = A{B^2}.\)

Xem lời giải

verified Giải bởi Vietjack

b)  Xét \(\Delta OBE\) cân tại \(O\) (do \(OB = OE = R)\) nên

\(\widehat {OBE} = \widehat {OEB} = \frac{{180^\circ - \widehat {BOE}}}{2} = 90^\circ - \frac{1}{2}\widehat {BOE}.\)

Xét \(\Delta OED\) cân tại \(O\) (do \(OD = OE = R)\) nên \(2\widehat {ODE} = 180^\circ - \widehat {EOD} = \widehat {BOE}\).

Suy ra \(2\widehat {ODE} = \widehat {BOE}\) hay \(\widehat {ODE} = \frac{1}{2}\widehat {BOE}\). Do đó, \(\widehat {BDA} = \frac{1}{2}\widehat {BOE}.\)

Suy ra \(\widehat {OBE} = 90^\circ - \widehat {BDA}.\)

\(\widehat {OBE} = 90^\circ - \widehat {ABE}\) nên \[\widehat {ABE} = \widehat {ADB}\].

Xét \[\Delta ABE\]\[\Delta ADB\] có: \[\widehat {BAD}\] chung, \[\widehat {ABE} = \widehat {ADB}\].

Do đó  (g.g)

Suy ra \[\frac{{AB}}{{AD}} = \frac{{AE}}{{AB}}\] nên \[A{B^2} = AE \cdot AD\].

Câu 3:

c) Cho biết \(OA = \left( {\sqrt 6 + \sqrt 2 } \right)R\), tính diện tích hình quạt giới hạn bởi bán kính \(OC,\,\,OD\) và cung nhỏ \(CD.\)

Xem lời giải

verified Giải bởi Vietjack

c) Xét \(\Delta AOB\) vuông tại \(B,\) có:

\(\cos \widehat {AOB} = \frac{{OB}}{{OA}} = \frac{R}{{\left( {\sqrt 6 + \sqrt 2 } \right)R}} = \frac{{\sqrt 6 - \sqrt 2 }}{4},\) suy ra \(\widehat {AOB} = 75^\circ .\)

Do \[AB,AC\] lần lượt là tiếp tuyến tại \[B,C\] của đường tròn \(\left( O \right)\) nên \[OA\] là tia tiếp tuyến của \(\widehat {BOC}\) (tính chất 2 tiếp tuyến cắt nhau).

Suy ra \(\widehat {BOC} = 2\widehat {AOB} = 2 \cdot 75^\circ = 150^\circ .\)

Do đó \(\widehat {COD} = 180^\circ - \widehat {BOC} = 180^\circ - 150^\circ = 30^\circ \) nên

Diện tích hình quạt giới hạn bởi bán kính \(OC,\,\,OD\) và cung nhỏ \(CD\) là:

\(S = \frac{{\pi {R^2} \cdot 30}}{{360}} = \frac{{\pi {R^2}}}{{12}}\)vdt).

Vậy diện tích hình quạt giới hạn bởi bán kính \(OC,\,\,OD\) và cung nhỏ \(CD\) là \(\frac{{\pi {R^2}}}{{12}}\) vdt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[\frac{x}{{x + 3}} - \frac{2}{{x - 3}} = \frac{{ - 2x - 6}}{{{x^2} - 9}}\]

\[\frac{{x\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} - \frac{{2\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{ - 2x - 6}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\]

\[x\left( {x - 3} \right) - 2\left( {x + 3} \right) = - 2x - 6\]

\[{x^2} - 5x - 6 = - 2x - 6\]

\[{x^2} - 3x = 0\]

\(x\left( {x - 3} \right) = 0\)

\(x = 0\) hoặc \(x - 3 = 0\)

\(x = 0\) (thỏa mãn) hoặc \(x = 3\) (không thỏa mãn).

Vậy phương trình đã cho có nghiệm là \(x = 0.\)

Lời giải

Hướng dẫn giải

a) – Xét biểu thức \(A = \frac{{\sqrt x + 2}}{{\sqrt x - 4}}\).

Điều kiện xác định của biểu thức \(A\)\(x \ge 0\)\(\sqrt x - 4 \ne 0\) hay \(x \ge 0,\,\,x \ne 16.\)

– Xét biểu thức \[B = \frac{{\sqrt x - 2}}{{\sqrt x + 4}} - \frac{{10\sqrt x - 8}}{{16 - x}}\].

Với \(x \ge 0\), ta có:

\[16 - x = \left( {4 + \sqrt x } \right)\left( {4 - \sqrt x } \right) = - \left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)\].

\(x \ge 0\) nên \(\sqrt x  \ge 0,\) suy ra \(\sqrt x + 4 > 0.\)

Điều kiện xác định của biểu thức \(B\)\(x \ge 0\)\(\sqrt x - 4 \ne 0\) hay \(x \ge 0,\,\,x \ne 16.\)

Vậy điều kiện xác định của biểu thức \(A\) và biểu thức \(B\) đều\(x \ge 0,\,\,x \ne 16.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP