Câu hỏi:

23/12/2025 15 Lưu

(1,5 điểm) Một người có tầm mắt cao \[1,6{\rm{ m}}\] đứng trên sân thượng của một tòa nhà cao \[{\rm{25 m}}\] nhìn thấy một chiếc xe đang đứng yên với góc nghiêng xuống \[35^\circ \] (như hình vẽ).

Viết tỉ số lượng giác \(\sin ,\,\,\tan \) của góc \(35^\circ \) theo các cạnh \(AB,\,\,BC,\,\,CA.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \[Ax\,{\rm{//}}\,BC\] suy ra \[\widehat {ACB} = \widehat {xAC} = 35^\circ \] (so le trong).

Xét \(\Delta ABC\) vuông tại \(B,\) ta có:

\[\sin 35^\circ = \sin \widehat {ACB} = \frac{{AB}}{{AC}};\] \[\tan 35^\circ = \tan \widehat {ACB} = \frac{{AB}}{{BC}}.\]

Câu hỏi cùng đoạn

Câu 2:

Tính các khoảng cách từ chiếc xe đến mắt người quan sát và đến chân tòa nhà (kết quả làm tròn đến hàng đơn vị).

Xem lời giải

verified Giải bởi Vietjack

Ta có \[AB = 1,6 + 25 = 26,6{\rm{ m}}{\rm{.}}\]

Theo câu a, ta có:

\[\tan 35^\circ = \tan \widehat {ACB} = \frac{{AB}}{{BC}}\] nên \[BC = \frac{{AB}}{{\tan 35^\circ }} = \frac{{26,6}}{{\tan 35^\circ }} \approx 38{\rm{ (m)}}{\rm{.}}\]

\[\sin 35^\circ = \sin \widehat {ACB} = \frac{{AB}}{{AC}}\] nên \[AC = \frac{{AB}}{{\sin 35^\circ }} = \frac{{26,6}}{{\sin 35^\circ }} \approx 46{\rm{\;(m)}}{\rm{.}}\]

Vậy chiếc xe cách tòa nhà khoảng \[38{\rm{ m}}\] và cách mắt người quan sát khoảng \(46{\rm{\;m}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện xác định: \(x \ne \frac{1}{3},\,\,x \ne - \frac{1}{3}.\)

Ta có: \(\frac{{1 - 3x}}{{1 + 3x}} - \frac{{1 + 3x}}{{1 - 3x}} = \frac{{12}}{{1 - 9{x^2}}}\)

\(\frac{{{{\left( {1 - 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} - \frac{{{{\left( {1 + 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} = \frac{{12}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}}\)

\(\frac{{{{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} = \frac{{12}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}}\)

\({\left( {1 - 3x} \right)^2} - {\left( {1 + 3x} \right)^2} = 12\)

\(\left( {1 - 3x - 1 - 3x} \right)\left( {1 - 3x + 1 + 3x} \right) = 12\)

\( - 6x \cdot 2 = 12\)

\( - 12x = 12\)

    \(x = - 1\) (thỏa mãn).

Vậy phương trình có nghiệm \(x = - 1\).

Lời giải

a) Xét biểu thức \(A = \frac{{\sqrt x + 2}}{{\sqrt x - 2}} - \frac{{\sqrt x - 2}}{{\sqrt x + 2}} + \frac{{4x}}{{x - 4}}\).

Điều kiện xác định của biểu thức \(A\)\(x \ge 0,\,\,\sqrt x - 2 \ne 0,\,\,\sqrt x + 2 \ne 0,\,\,x - 4 \ne 0.\)

Với \(x \ge 0\), ta có: \(\sqrt x - 2 \ne 0\) khi \(x \ne 4;\)

\(\sqrt x + 2 > 0\);

\(x - 4 \ne 0\) khi \(x \ne 4.\)

Do đó, điều kiện xác định của biểu thức \(A\)\(x \ge 0\)\(x \ne 4.\)

Xét biểu thức \(B = \frac{{4\left( {\sqrt x + 2} \right)}}{{\sqrt x - 2}}.\)

Do đó, điều kiện xác định của biểu thức \(B\)\(x \ge 0,\,\,\sqrt x - 2 \ne 0,\) tức là \(x \ge 0\)\(x \ne 4\).

Vậy điều kiện xác định của biểu thức \(A\) và biểu thức \(B\) đều\(x \ge 0,\,\,x \ne 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP