Câu hỏi:

23/12/2025 24 Lưu

(2,5 điểm) Cho nửa đường tròn \(\left( O \right)\) và đường kính \(AB\). Từ \[A\]\[B\] kẻ hai tiếp tuyến \[Ax,\,\,By.\] Qua điểm \[M\] thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến \[Ax,\,\,By\] lần lượt ở \[C\]\[D\]. Các đường thẳng \[AD\]\[BC\] cắt nhau tại \[N\].

a) Chứng minh rằng \(\widehat {COD} = 90^\circ \)\[AC \cdot BD = \frac{{A{B^2}}}{4}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Chứng minh rằng \(\widehat {COD} = 90^\circ \) và \[AC \cdot BD = \frac{{A{B^2}}}{4}.\] (ảnh 1)

a) Ta có \(CA,\,\,CM\) là hai tiếp tuyến của nửa đường tròn \(\left( O \right)\) cắt nhau tại \(C\) nên \(CA = CM\)\(OC\) là tia phân giác của \[\widehat {AOM}\], do đó \(\widehat {AOC} = \widehat {COM} = \frac{1}{2}\widehat {AOM}.\)

Tương tự, ta có \(DB = DM\)\[OD\] là tia phân giác của \[\widehat {BOM}\], do đó \(\widehat {BOD} = \widehat {MOD} = \frac{1}{2}\widehat {BOM}.\)

\[\widehat {AOM}\]\[\widehat {BOM}\] là hai góc kề bù nên \[\widehat {AOM} + \widehat {BOM} = 180^\circ .\]

Khi đó, ta có: \[\widehat {COM} + \widehat {MOD} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\left( {\widehat {AOM} + \widehat {BOM}} \right) = \frac{1}{2} \cdot 180^\circ = 90^\circ .\]

Hay \(\widehat {COD} = 90^\circ .\)

\(CD\) là tiếp tuyến của nửa đường tròn \(\left( O \right)\) tại \(M\) nên \[CD \bot OM.\]

Xét \(\Delta COM\)\(\Delta ODM\) có:

\[\widehat {CMO} = \widehat {OMD} = 90^\circ \]\(\widehat {OCM} = \widehat {DOM}\) (cùng phụ với \(\widehat {COM}\))

Do đó ΔCOMΔODM (g.g)

Suy ra \(\frac{{CM}}{{OM}} = \frac{{OM}}{{DM}}\) hay \[O{M^2} = CM.DM\].

\[AC = CM\]\[BD = MD\] (chứng minh trên)

Do đó, \[O{M^2} = CM.DM = AC.BD\] hay \[{R^2} = AC \cdot BD\]. (1)

Mặt khác, \(AB\) là đường kính của nửa đường tròn \(\left( O \right)\) nên \[AB = 2R,\] suy ra \[A{B^2} = 4{R^2}\] nên \[{R^2} = \frac{{A{B^2}}}{4}.\] (2)

Từ (1) và (2) suy ra \[AC.BD = \frac{{A{B^2}}}{4}\].

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh rằng \[MN \bot AB.\]

Xem lời giải

verified Giải bởi Vietjack

b) Ta có: \[AC \bot AB,\,\,BD \bot AB\] nên \[AC\,{\rm{//}}\,BD\].

Theo hệ quả định lí Thalès, ta có \[\frac{{CN}}{{BN}} = \frac{{AC}}{{BD}}\].

\[CA = CM\], \[BD = DM\] (chứng minh câu a)

Do đó ta có \[\frac{{CN}}{{BN}} = \frac{{CM}}{{DM}},\] suy ra \[MN\,{\rm{//}}\,BD\] (định lí Thalès đảo).

Lại có \[BD \bot AB\] nên \[MN \bot AB.\]

Câu 3:

c) Cho \[OD = 2OM\]. Tính diện tích hình quạt giới hạn bởi các bán kính \[OM,OA\] và cung nhỏ \[MA.\]

Xem lời giải

verified Giải bởi Vietjack

c) Xét tam giác \[MOD\], có: \[\cos \widehat {MOD} = \frac{{MO}}{{OD}} = \frac{{MO}}{{2MO}} = \frac{1}{2}\], suy ra \[\widehat {MOD} = 60^\circ \].

Theo câu a, \[OD\] là tia phân giác của \[\widehat {BOM}\] nên \[\widehat {BOM} = 2\widehat {MOD} = 2 \cdot 60^\circ = 120^\circ .\]

\[\widehat {AOM} + \widehat {BOM} = 180^\circ \] (câu a)

Suy ra \[\widehat {AOM} = 180^\circ - \widehat {BOM} = 180^\circ - 120^\circ  = 60^\circ \].

\(\widehat {AOM}\) là góc ở tâm chắn cung \(AM\) nhỏ nên

Diện tích hình quạt giới hạn bởi bán kính \[OM,OA\] và cung nhỏ \[MA\] là:

\[S = \frac{{60 \cdot \pi \cdot {R^2}}}{{360}} = \frac{{\pi {R^2}}}{6}\] (đơn vị diện tích).

Vậy diện tích hình quạt giới hạn bởi bán kính \[OM,\,\,OA\] và cung nhỏ \[MA\]\[\frac{{\pi {R^2}}}{6}\] (đvdt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện xác định: \(x \ne \frac{1}{3},\,\,x \ne - \frac{1}{3}.\)

Ta có: \(\frac{{1 - 3x}}{{1 + 3x}} - \frac{{1 + 3x}}{{1 - 3x}} = \frac{{12}}{{1 - 9{x^2}}}\)

\(\frac{{{{\left( {1 - 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} - \frac{{{{\left( {1 + 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} = \frac{{12}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}}\)

\(\frac{{{{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} = \frac{{12}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}}\)

\({\left( {1 - 3x} \right)^2} - {\left( {1 + 3x} \right)^2} = 12\)

\(\left( {1 - 3x - 1 - 3x} \right)\left( {1 - 3x + 1 + 3x} \right) = 12\)

\( - 6x \cdot 2 = 12\)

\( - 12x = 12\)

    \(x = - 1\) (thỏa mãn).

Vậy phương trình có nghiệm \(x = - 1\).

Lời giải

a) Xét biểu thức \(A = \frac{{\sqrt x + 2}}{{\sqrt x - 2}} - \frac{{\sqrt x - 2}}{{\sqrt x + 2}} + \frac{{4x}}{{x - 4}}\).

Điều kiện xác định của biểu thức \(A\)\(x \ge 0,\,\,\sqrt x - 2 \ne 0,\,\,\sqrt x + 2 \ne 0,\,\,x - 4 \ne 0.\)

Với \(x \ge 0\), ta có: \(\sqrt x - 2 \ne 0\) khi \(x \ne 4;\)

\(\sqrt x + 2 > 0\);

\(x - 4 \ne 0\) khi \(x \ne 4.\)

Do đó, điều kiện xác định của biểu thức \(A\)\(x \ge 0\)\(x \ne 4.\)

Xét biểu thức \(B = \frac{{4\left( {\sqrt x + 2} \right)}}{{\sqrt x - 2}}.\)

Do đó, điều kiện xác định của biểu thức \(B\)\(x \ge 0,\,\,\sqrt x - 2 \ne 0,\) tức là \(x \ge 0\)\(x \ne 4\).

Vậy điều kiện xác định của biểu thức \(A\) và biểu thức \(B\) đều\(x \ge 0,\,\,x \ne 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP