(1,5 điểm) Sau một trận bão lớn, một cái cây mọc thẳng đứng ở vị trí \(C\) đã bị gãy ngang tại \(A\) (như hình vẽ). Ngọn cây chạm mặt đất cách gốc một khoảng \(BC = 5{\rm{ m}}\). Biết rằng phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\).

a) Viết tỉ số lượng giác sin và tan của góc \(ABC\) theo \(AB,\,\,BC,\,\,CA.\)
(1,5 điểm) Sau một trận bão lớn, một cái cây mọc thẳng đứng ở vị trí \(C\) đã bị gãy ngang tại \(A\) (như hình vẽ). Ngọn cây chạm mặt đất cách gốc một khoảng \(BC = 5{\rm{ m}}\). Biết rằng phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\).

a) Viết tỉ số lượng giác sin và tan của góc \(ABC\) theo \(AB,\,\,BC,\,\,CA.\)
Quảng cáo
Trả lời:
a) Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(\sin \widehat {ABC} = \frac{{AC}}{{AB}},\,\,\tan \widehat {ABC} = \frac{{AC}}{{BC}}.\)
Câu hỏi cùng đoạn
Câu 2:
b) Hỏi chiều cao ban đầu của cây là bao nhiêu mét (kết quả làm tròn đến chữ số thập phân thứ hai)?
b) Hỏi chiều cao ban đầu của cây là bao nhiêu mét (kết quả làm tròn đến chữ số thập phân thứ hai)?
b) Theo đề bài, phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\) hay \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(\frac{{AC}}{{AB}} = \frac{2}{3}\).
Theo câu a, ta có: \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\), suy ra \(\alpha = \widehat {ABC} \approx 41^\circ 49'.\)
Mà \(\tan \widehat {ABC} = \frac{{AC}}{{BC}}\) nên \(AC = BC \cdot \tan \widehat {ABC} \approx 5 \cdot \tan 41^\circ 49' \approx 4,47{\rm{\;(m)}}{\rm{.}}\)
Mà \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(AB = \frac{3}{2}AC \approx \frac{3}{2} \cdot 4,47 = 6,705{\rm{ (m)}}{\rm{.}}\)
Độ dài cây ban đầu là tổng của phần ngọn bị gãy \(AB\) và phần gốc \(AC\).
Vậy chiều cao ban đầu của cây khoảng: \[4,47 + 6,705 = 11,175 \approx 11,18{\rm{\;(m)}}{\rm{.}}\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Điều kiện xác định: \(x \ne 1\) và \(x \ne - 1\).
Ta có: \(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{8}{{{x^2} - 1}}\)
\(\frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{8}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\)
\(\frac{{{{\left( {x - 1} \right)}^2} - {{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{8}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\)
\({\left( {x - 1} \right)^2} - {\left( {x + 1} \right)^2} = 8\)
\(\left( {x - 1 + x + 1} \right)\left( {x - 1 - x - 1} \right) = 8\)
\(2x.\left( { - 2} \right) = 8\)
\( - 4x = 8\)
\(x = - 2\) (thỏa mãn).
Vậy nghiệm của phương trình là \(x = - 2\).Lời giải
![a) Chứng minh \[OA \bot BC\] và \[AM \cdot AN = AH \cdot AO = A{O^2} - {R^2}.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/2-1766496288.png)
a) ⦁ Xét đường tròn \[\left( O \right)\] có \[AB,AC\] là hai tiếp cắt nhau tại \[A\] nên \[AB = AC\](tính chất hai tiếp tuyến cắt nhau). Do đó \[A\] thuộc đường trung trực \[BC\].
Mặt khác, \[OB = OC = R\] nên \[O\] thuộc trung trực của đoạn thẳng \[BC\].
Suy ra \(OA\) là đường trung trực của đoạn thẳng \(BC\), do đó \[OA \bot BC\] tại \[H\].
⦁ Vì \(AB\) là tiếp tuyến của đường tròn \(\left( O \right)\) tại \(B\) nên \(AB \bot OB\) tại \(B.\)
Xét \[\Delta HAB\] và \[\Delta BAO\] có: \(\widehat {AHB} = \widehat {ABO} = 90^\circ \) và \(\widehat {OAB}\) là góc chung.
Do đó (g.g)
Suy ra \[\frac{{HA}}{{BA}} = \frac{{AB}}{{AO}}\] hay \[AH \cdot AO = A{B^2}\] (1).
Xét \(\Delta OAB\) vuông tại \(B,\) ta có: \[A{B^2} = A{O^2} - O{B^2} = A{O^2} - {R^2}\] (định lí Pythagore). (2)
Lại có:
\[AM \cdot AN = \left( {AO - OM} \right)\left( {AO + ON} \right)\]
\[ = A{O^2} + AO \cdot ON - OM \cdot AO - OM \cdot ON\]
\[ = A{O^2} - OM \cdot ON\]\[ = A{O^2} - {R^2}\] (vì \(OM = ON = R)\) (3)
Từ (1), (2), (3) suy ra \[AM \cdot AN = AH \cdot AO = A{O^2} - {R^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
