Câu hỏi:

23/12/2025 41 Lưu

(1,5 điểm) Hai người A và B đứng cùng bờ sông nhìn ra một cồn C nổi giữa sông. Người A nhìn ra cồn với một góc \(43^\circ \) so với bờ sông, người B nhìn ra cồn với một góc \(28^\circ \) so với bờ sông. Khoảng cách của cồn và bờ sông hai người đứng chính là độ dài đoạn thẳng \(CH.\) Hai người đứng cách nhau \(250{\rm{ m}}{\rm{.}}\)

a) Viết tỉ số lượng giác sin và tan của góc \(CAH\) theo \(AC,\,\,CH,\,\,AH.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét tam giác \(CAH\) vuông tại \(H\), ta có:

\(\sin \widehat {CAH} = \frac{{CH}}{{AC}},\,\,\tan \widehat {CAH} = \frac{{CH}}{{AH}}.\)

Câu hỏi cùng đoạn

Câu 2:

b) Hỏi cồn cách bờ sông hai người đứng bao nhiêu mét (Kết quả làm tròn đến hàng phần trăm)?

Xem lời giải

verified Giải bởi Vietjack

b) Xét tam giác \(AHC\) vuông tại \(H\), ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) nên \(AH = \frac{{CH}}{{\tan \widehat {CAH}}} = \frac{{CH}}{{\tan 43^\circ }}\) (1)

Xét tam giác \(BHC\) vuông tại \(H\), ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) nên \(BH = \frac{{CH}}{{\tan \widehat {CBH}}} = \frac{{CH}}{{\tan 28^\circ }}\) (2)

Từ (1) và (2) ta có: \(AB = AH + BH = \frac{{CH}}{{\tan 43^\circ }} + \frac{{CH}}{{\tan 28^\circ }} = CH\left( {\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}} \right)\).

Do đó, \(CH = \frac{{AB}}{{\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}}} = \frac{{250}}{{\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}}} \approx 84,66{\rm{ (m)}}{\rm{.}}\)

Vậy cồn cách bờ sông hai người đứng khoảng \(84,66{\rm{ m}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

– Gọi \(x\) là số lần giảm giá \(10\,\,000\) đồng \(\left( {x \in \mathbb{N},\,\,0 \le x < 20} \right).\)

Giá bán mỗi sản phẩm sau khi giảm giá là: \(200 - 10x\) (nghìn đồng).

Số lượng sản phẩm bán ra sau khi giảm giá là: \(100 + 20x\) (chiếc).

Doanh thu \(T\left( x \right)\) của cửa hàng được tính bằng cách nhân giá bán mỗi sản phẩm với số lượng sản phẩm bán ra:

\(T\left( x \right) = \left( {200 - 10x} \right)\left( {100 + 20x} \right)\)

        \( = 200.\left( {100 + 20x} \right) - 10x\left( {100 + 20x} \right)\)

       \( = 20\,\,000 + 4\,\,000x - 1\,\,000x - 200{x^2}\)

       \( = 20\,\,000 + 3\,\,000x - 200{x^2}\)

      \( = - 200\left( {{x^2} - 15x + 7,{5^2}} \right) + 31\,\,250\)

      \( = - 200{\left( {x - 7,5} \right)^2} + 31\,\,250\) (nghìn đồng).

Nhận thấy \( - 200{\left( {x - 7,5} \right)^2} + 31\,\,250 \le 31\,\,250\).

Dấu “=” xảy ra khi và chỉ khi \(x - 7,5 = 0\) khi \(x = 7,5\).

Do \(x\) phải là số nguyên dương nên \(x = 7,5\) không thỏa mãn.

– Ta thấy rằng \(T\left( x \right) = - 200{\left( {x - 7,5} \right)^2} + 31\,\,250\) lớn nhất khi \({\left( {x - 7,5} \right)^2}\) nhỏ nhất.

Do giá trị của \(T\left( x \right)\) phụ thuộc \(x - 7,5\)\(x\) nguyên nên ta xét các trường hợp sau:

Với \(x - 7,5 > 0\) hay \(x > 7,5\)

\(x\) nguyên dương và \({\left( {x - 7,5} \right)^2}\) nhỏ nhất, nên ta lấy giá trị \(x = 8.\)

Khi đó, \(T\left( 8 \right) = 31\,\,200\) (nghìn đồng).

Với \(x - 7,5 < 0\) hay \(x < 7,5\)

\(x\) nguyên dương và \({\left( {x - 7,5} \right)^2}\) nhỏ nhất, nên ta lấy giá trị \(x = 7.\)

Khi đó, \(T\left( 7 \right) = 31\,\,200\) (nghìn đồng).

Nhận thấy cả hai giá trị \(x = 7,\,\,x = 8\) đều cho doanh thu \(T = 31\,\,200\) (nghìn đồng) hay \(T = 31\,\,200\,\,000\) đồng. Do đó, cửa hàng nên giảm giá \(70\,\,000\) đồng hoặc \(80\,\,000\) đồng để thu được doanh thu cao nhất.

Lời giải

a) Điều kiện xác định: \[x \ne 1;x \ne 3\].

Ta có: \[\frac{{x + 1}}{{x - 3}} - \frac{{x + 3}}{{x - 1}} = \frac{{8x - 5}}{{\left( {x - 3} \right)\left( {x - 1} \right)}}\]

\[\frac{{\left( {x + 1} \right)\left( {x - 1} \right)}}{{\left( {x - 3} \right)\left( {x - 1} \right)}} - \frac{{\left( {x + 3} \right)\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x - 1} \right)}} = \frac{{8x - 5}}{{\left( {x - 3} \right)\left( {x - 1} \right)}}\]

\[\frac{{{x^2} - 1 - \left( {{x^2} - 9} \right)}}{{\left( {x - 3} \right)\left( {x - 1} \right)}} = \frac{{8x - 5}}{{\left( {x - 3} \right)\left( {x - 1} \right)}}\]

\[{x^2} - 1 - {x^2} + 9 = 8x - 5\]

\[8 + 5 = 8x\]

\[8x = 13\]

\[x = \frac{{13}}{8}\] (thỏa mãn).

Vậy phương trình có nghiệm là \[x = \frac{{13}}{8}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP