CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho hình chóp S.ABC có SA vuông góc (ABC), đáy ABC là tam giác đều cạnh a và SA = 3a/2.  Tính số đo góc phẳng nhị diện [S,BC,A]. (ảnh 1)

Gọi \(I\) là trung điểm \(BC \Rightarrow AI \bot BC\) (vì \(ABC\) là tam giác đều).

Ta có: \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot SI\).

Khi đó: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SI \bot BC\\AI \bot BC\end{array} \right. \Rightarrow \left[ {S,BC,A} \right] = \widehat {SIA}\).

Mà \(\Delta ABC\) đều cạnh \(a \Rightarrow AI = \frac{{a\sqrt 3 }}{2}\).

Xét \(\Delta SAI\) vuông tại \(A\), ta có: \({\rm{tan}}\widehat {SIA} = \frac{{SA}}{{AI}} = \sqrt 3  \Rightarrow \widehat {SIA} = 60^\circ \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Vì \[A\] và \[B\]là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,4.0,45 = 0,18\).

Do đó \[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,4 + 0,45 - 0,18 = 0,67\].

Câu 3

A. \[{\log _a}\frac{x}{y} = \frac{{{{\log }_a}x}}{{{{\log }_a}y}}\].       
B. \[{\log _a}\frac{1}{x} = \frac{1}{{{{\log }_a}x}}\].
C. \[{\log _a}\left( {x + y} \right) = {\log _a}x + {\log _a}y\].     
D. \[{\log _b}x = {\log _b}a.{\log _a}x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. ACB’D’ . 
B. (ACC’A’) (BDD’B’). 
C. (AA’B’B) (ABCD) . 
D. (AA’B’B) (BCC’B’).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(BA \bot \left( {SAD} \right).\) 
B. \(BA \bot \left( {SAC} \right).\) 
C. \(BA \bot \left( {SBC} \right).\) 
D. \(BA \bot \left( {SCD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP