Câu hỏi:

24/12/2025 115 Lưu

a) Tìm tất cả các cặp số nguyên dương \(\left( {x;y} \right)\) thỏa mãn \(\left( {{x^2} - x - 1} \right)\left( {{y^2} + xy - 9} \right) = 2x + 1\)

b) Cho \(n\) là số nguyên dương lẻ sao cho \({3^n} + {7^n}\) chia hết cho 11. Tìm số dư khi chia \({2^n} + {6^n} + {2023^n}\) cho 11.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\left( {x;y} \right)\) nguyên dương nên từ điều kiện \(2x + 1 \vdots {x^2} - x - 1\)

                                                                              \(2{x^2} + x \vdots {x^2} - x - 1\)

\( \Rightarrow 2{x^2} - 2x - 2 + 3x + 2 \vdots {x^2} - x - 1 \Rightarrow 3x + 2 \vdots {x^2} - x - 1\)

Từ đó suy ra \(\left\{ {\begin{array}{*{20}{c}}{2x + 1 \vdots {x^2} - x - 1}\\{3x + 2 \vdots {x^2} - x - 1}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{6x + 3 \vdots {x^2} - x - 1}\\{6x + 3 \vdots {x^2} - x - 1}\end{array} \Rightarrow 1 \vdots {x^2} - x - 1} \right.\)

Suy ra \(\left[ {\begin{array}{*{20}{c}}{{x^2} - x - 1 = 1}\\{{x^2} - x - 1 = - 1}\end{array}} \right.\)

+) Với \({x^2} - x - 1 = 1 \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left( {x - 2} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\\{x = - 1\;\;\left( {loai} \right)}\end{array}} \right.\)

Từ \(x = 2 \Rightarrow \left( {{y^2} + 2y - 9} \right) = 5 \Leftrightarrow {\left( {y + 1} \right)^2} = 15\;\;\)(loại)

+ Với \({x^2} - x - 1 = - 1 \Leftrightarrow {x^2} - x = 0 \Leftrightarrow x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1\;\;\;\;\;\;\;\;\;\;\;\;\;}\\{x = 0\;\;\left( {loai} \right)}\end{array}} \right.\)

Từ \(x = 1 \Rightarrow - \left( {{y^2} + y - 9} \right) = 3 \Leftrightarrow {y^2} + y - 6 = 0 \Leftrightarrow \left( {y + 3} \right)\left( {y - 2} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y = - 3\;\;\left( {loai} \right)}\\{y = 2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{array}} \right.\)

Vậy cặp số nguyên dương \(\left( {x;y} \right)\) thỏa mãn \(\left( {{x^2} - x - 1} \right)\left( {{y^2} + xy - 9} \right) = 2x + 1\)\(x;y) = \left( {1;2} \right).\)

b) 

Ta có: \({3^n} + {8^n} + {7^n} + {4^n} \vdots 11\) (vì \(n\) lẻ)

\( \Rightarrow {4^n} + {8^n} \vdots 11 \Rightarrow {4^n}\left( {1 + {2^n}} \right) \vdots 11 \Rightarrow {2^n} + 1 \vdots 11\)

                                                                             \(n = 10k + 5\;(k \in \mathbb{N}\)

Ta có \({6^n} = {6^{10k + 5}} = {\left( {{6^{10}}} \right)^k}{.6^5} \equiv - 1\left( {mod11} \right);{2023^n} \equiv - 1\left( {mod11} \right)\)

Suy ra \({2^n} + {6^n} + {2023^n} \equiv - 3 \equiv 8\left( {mod11} \right)\)

Vậy \({2^n} + {6^n} + {2023^n} \equiv 8\left( {mod11} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có tứ giác \(CDHE\) nội tiếp \( \Rightarrow \widehat {DCE} + \widehat {DHE} = {180^0}\)

          \(\widehat {APB} = \widehat {ACB}\) (cùng chắn cung AB)

          \(\widehat {APB} = \widehat {AMB}\) (tính chất đối xứng)

          \(\widehat {AHB} = \widehat {EHD}\) (đối đỉnh) \( \Rightarrow \widehat {AMB} + \widehat {AHB} = {180^0}\) . Vậy tứ giác \(AHBM\) nội tiếp

b) Ta có tứ giác \(BFEC\) nội tiếp \( \Rightarrow \widehat {FBC} = \widehat {AEF} = \widehat {ATC} \Rightarrow \widehat {ACT} = \widehat {AZE} = {90^0}\)

\(PQ//FE\) suy ra \(Q\) đối xứng với \(P\) qua \(OA\)

c) Tiếp tuyến \(B\)\(C\) cắt nhau tại \(L\), \(AL\) cắt đường tròn tại \(J\). Dễ có \(L{B^2} = LS.LA = LS.LO\)

Suy ra tứ giác \(AJSO \Rightarrow \widehat {JSL} = \widehat {XSL} \Rightarrow \widehat {ASC} = \widehat {ABJ};\widehat {AJB} = \widehat {ACS} \Rightarrow \Delta ABJ \sim \Delta ASC\) (g.g)

\(\Delta ABC \sim \Delta AEF\) (g.g). Giả sử \(AJ\) cắt \(FE\) tại \(K'\) \( \Rightarrow \Delta FAK' \sim \Delta ABS\) (g.g)

\(S\) là trung điểm \(BC\) \( \Rightarrow K'\) là trung điểm \(FE \Rightarrow K \equiv K'\). Vậy tiếp tuyến tại \(B,\;C\)\(AK\) đồng quy.

Lời giải

Giải. Ta có \(\sqrt 5 Q\) = \(\frac{{\sqrt {5\left( {x - 2} \right)(x\_ + 2} }}{x} + \frac{{\sqrt {5\left( {y - 2} \right)\left( {y + 2} \right)} }}{y} + \frac{{\sqrt {5\left( {z - 2} \right)\left( {z + 2} \right)} }}{z}\)

\(\sqrt 5 Q \le \) \(\frac{{5\left( {x - 2} \right) + x + 2}}{{2x}} + \frac{{5\left( {y - 2} \right) + y + 2}}{{2y}} + \frac{{5\left( {z - 2} \right) + z + 2}}{{2z}}\)

 \( \Leftrightarrow \sqrt 5 Q \le \) \(\frac{{6x - 8}}{{2x}} + \frac{{6y - 8}}{{2y}} + \frac{{6z - 8}}{{2z}}\) = 9 – 4\(1\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)\)

Từ \(4xyz = 9\left( {x + y + z} \right) + 27 \Leftrightarrow \) 4 = 9\(\left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{xz}}} \right) + \frac{{27}}{{xyz}}\) \( \le \) 3\({\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)^2} + {\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)^3}\)

Đặt \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = t\)

Ta có

      \({t^3} + 3{t^2} - 4 \ge 0 \Leftrightarrow {t^3} - {t^2} + 4{t^2} - 4t + 4t - 4 \ge 0\)

                                     \( \Leftrightarrow \left( {t - 1} \right){\left( {t - 2} \right)^2} \ge 0\)

                                                                                     \( \Leftrightarrow t \ge 1\)

Suy ra \(\sqrt 5 Q \le 9 - 4.1 = 5 \Leftrightarrow Q \le \sqrt 5 \)

Vậy \(MaxQ = \sqrt 5 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x,y,z \ge 2;4xyz = 9\left( {x + y + z} \right) + 27\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\\{5\left( {x - 2} \right) = x + 2;5\left( {y - 2} \right) = y + 2;5\left( {z - 2} \right) = z + 2}\\{\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{array}} \right.\)

                                                                              \( \Leftrightarrow x = y = z = 3\)