Câu hỏi:

24/12/2025 9 Lưu

Xét ba số \(x;y;z \ge 2\) thỏa mãn \(4xyz = 9\left( {x + y + z} \right) + 27\)

Tìm giá trị lớn nhất của biểu thức Q = \(\frac{{\sqrt {{x^2} - 4} }}{x} + \frac{{\sqrt {{y^2} - 4} }}{y} + \frac{{\sqrt {{z^2} - 4} }}{z}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải. Ta có \(\sqrt 5 Q\) = \(\frac{{\sqrt {5\left( {x - 2} \right)(x\_ + 2} }}{x} + \frac{{\sqrt {5\left( {y - 2} \right)\left( {y + 2} \right)} }}{y} + \frac{{\sqrt {5\left( {z - 2} \right)\left( {z + 2} \right)} }}{z}\)

\(\sqrt 5 Q \le \) \(\frac{{5\left( {x - 2} \right) + x + 2}}{{2x}} + \frac{{5\left( {y - 2} \right) + y + 2}}{{2y}} + \frac{{5\left( {z - 2} \right) + z + 2}}{{2z}}\)

 \( \Leftrightarrow \sqrt 5 Q \le \) \(\frac{{6x - 8}}{{2x}} + \frac{{6y - 8}}{{2y}} + \frac{{6z - 8}}{{2z}}\) = 9 – 4\(1\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)\)

Từ \(4xyz = 9\left( {x + y + z} \right) + 27 \Leftrightarrow \) 4 = 9\(\left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{xz}}} \right) + \frac{{27}}{{xyz}}\) \( \le \) 3\({\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)^2} + {\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)^3}\)

Đặt \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = t\)

Ta có

      \({t^3} + 3{t^2} - 4 \ge 0 \Leftrightarrow {t^3} - {t^2} + 4{t^2} - 4t + 4t - 4 \ge 0\)

                                     \( \Leftrightarrow \left( {t - 1} \right){\left( {t - 2} \right)^2} \ge 0\)

                                                                                     \( \Leftrightarrow t \ge 1\)

Suy ra \(\sqrt 5 Q \le 9 - 4.1 = 5 \Leftrightarrow Q \le \sqrt 5 \)

Vậy \(MaxQ = \sqrt 5 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x,y,z \ge 2;4xyz = 9\left( {x + y + z} \right) + 27\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\\{5\left( {x - 2} \right) = x + 2;5\left( {y - 2} \right) = y + 2;5\left( {z - 2} \right) = z + 2}\\{\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{array}} \right.\)

                                                                              \( \Leftrightarrow x = y = z = 3\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\left( {x;y} \right)\) nguyên dương nên từ điều kiện \(2x + 1 \vdots {x^2} - x - 1\)

                                                                              \(2{x^2} + x \vdots {x^2} - x - 1\)

\( \Rightarrow 2{x^2} - 2x - 2 + 3x + 2 \vdots {x^2} - x - 1 \Rightarrow 3x + 2 \vdots {x^2} - x - 1\)

Từ đó suy ra \(\left\{ {\begin{array}{*{20}{c}}{2x + 1 \vdots {x^2} - x - 1}\\{3x + 2 \vdots {x^2} - x - 1}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{6x + 3 \vdots {x^2} - x - 1}\\{6x + 3 \vdots {x^2} - x - 1}\end{array} \Rightarrow 1 \vdots {x^2} - x - 1} \right.\)

Suy ra \(\left[ {\begin{array}{*{20}{c}}{{x^2} - x - 1 = 1}\\{{x^2} - x - 1 = - 1}\end{array}} \right.\)

+) Với \({x^2} - x - 1 = 1 \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left( {x - 2} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\\{x = - 1\;\;\left( {loai} \right)}\end{array}} \right.\)

Từ \(x = 2 \Rightarrow \left( {{y^2} + 2y - 9} \right) = 5 \Leftrightarrow {\left( {y + 1} \right)^2} = 15\;\;\)(loại)

+ Với \({x^2} - x - 1 = - 1 \Leftrightarrow {x^2} - x = 0 \Leftrightarrow x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1\;\;\;\;\;\;\;\;\;\;\;\;\;}\\{x = 0\;\;\left( {loai} \right)}\end{array}} \right.\)

Từ \(x = 1 \Rightarrow - \left( {{y^2} + y - 9} \right) = 3 \Leftrightarrow {y^2} + y - 6 = 0 \Leftrightarrow \left( {y + 3} \right)\left( {y - 2} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y = - 3\;\;\left( {loai} \right)}\\{y = 2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{array}} \right.\)

Vậy cặp số nguyên dương \(\left( {x;y} \right)\) thỏa mãn \(\left( {{x^2} - x - 1} \right)\left( {{y^2} + xy - 9} \right) = 2x + 1\)\(x;y) = \left( {1;2} \right).\)

b) 

Ta có: \({3^n} + {8^n} + {7^n} + {4^n} \vdots 11\) (vì \(n\) lẻ)

\( \Rightarrow {4^n} + {8^n} \vdots 11 \Rightarrow {4^n}\left( {1 + {2^n}} \right) \vdots 11 \Rightarrow {2^n} + 1 \vdots 11\)

                                                                             \(n = 10k + 5\;(k \in \mathbb{N}\)

Ta có \({6^n} = {6^{10k + 5}} = {\left( {{6^{10}}} \right)^k}{.6^5} \equiv - 1\left( {mod11} \right);{2023^n} \equiv - 1\left( {mod11} \right)\)

Suy ra \({2^n} + {6^n} + {2023^n} \equiv - 3 \equiv 8\left( {mod11} \right)\)

Vậy \({2^n} + {6^n} + {2023^n} \equiv 8\left( {mod11} \right)\)

Lời giải

a) Ta có tứ giác \(CDHE\) nội tiếp \( \Rightarrow \widehat {DCE} + \widehat {DHE} = {180^0}\)

          \(\widehat {APB} = \widehat {ACB}\) (cùng chắn cung AB)

          \(\widehat {APB} = \widehat {AMB}\) (tính chất đối xứng)

          \(\widehat {AHB} = \widehat {EHD}\) (đối đỉnh) \( \Rightarrow \widehat {AMB} + \widehat {AHB} = {180^0}\) . Vậy tứ giác \(AHBM\) nội tiếp

b) Ta có tứ giác \(BFEC\) nội tiếp \( \Rightarrow \widehat {FBC} = \widehat {AEF} = \widehat {ATC} \Rightarrow \widehat {ACT} = \widehat {AZE} = {90^0}\)

\(PQ//FE\) suy ra \(Q\) đối xứng với \(P\) qua \(OA\)

c) Tiếp tuyến \(B\)\(C\) cắt nhau tại \(L\), \(AL\) cắt đường tròn tại \(J\). Dễ có \(L{B^2} = LS.LA = LS.LO\)

Suy ra tứ giác \(AJSO \Rightarrow \widehat {JSL} = \widehat {XSL} \Rightarrow \widehat {ASC} = \widehat {ABJ};\widehat {AJB} = \widehat {ACS} \Rightarrow \Delta ABJ \sim \Delta ASC\) (g.g)

\(\Delta ABC \sim \Delta AEF\) (g.g). Giả sử \(AJ\) cắt \(FE\) tại \(K'\) \( \Rightarrow \Delta FAK' \sim \Delta ABS\) (g.g)

\(S\) là trung điểm \(BC\) \( \Rightarrow K'\) là trung điểm \(FE \Rightarrow K \equiv K'\). Vậy tiếp tuyến tại \(B,\;C\)\(AK\) đồng quy.