Câu hỏi:

24/12/2025 7 Lưu

Đồ thị của hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 3;5} \right]\) như hình vẽ dưới đây (phần cong của đồ thị là một phần của Parabol \(y = a{x^2} + bx + c\)).

a) Đ, b) S, c) Đ, d) S (ảnh 1)

a) Diện tích tam giác\(ODE\) bằng 6.
Đúng
Sai
b) Diện tích hình phẳng giới hạn bởi Parabol và đường thẳng CB bằng \(\frac{9}{2}\).
Đúng
Sai
c) Giá trị của \(I = \int\limits_{ - 2}^3 {f\left( x \right)dx} \) bằng \(\frac{{97}}{6}\).
Đúng
Sai
d) Gọi diện tích tam giác \(OED\)\({S_1}\) và diện tích hình phẳng giới hạn bởi phần cong Parabol, trục \(Ox\) và đường thẳng \(x = 1\)\({S_2}\). Khi đó \(3{S_1} > 2{S_2}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) Đ, c) Đ, d) S

a) \({S_{ODE}} = \frac{1}{2}OD.OE = \frac{1}{2}.4.3 = 6\).

b) Parabol \(y = a{x^2} + bx + c\) đi qua các điểm \(A\left( {2;4} \right),B\left( {4;0} \right),C\left( {1;3} \right)\) nên ta có hệ

\(\left\{ \begin{array}{l}4a + 2b + c = 4\\16a + 4b + c = 0\\a + b + c = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 4\\c = 0\end{array} \right.\).

Do đó \(\left( P \right):y = - {x^2} + 4x\).

Đường thẳng \(CB:y = ax + b\) đi qua điểm \(B\left( {4;0} \right);C\left( {1;3} \right)\) nên ta có:

\(\left\{ \begin{array}{l}4a + b = 0\\a + b = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 4\end{array} \right.\).

Do đó đường thẳng \(CB:y = - x + 4\).

Khi đó \(S = \int\limits_1^4 {\left| { - {x^2} + 4x - \left( { - x + 4} \right)} \right|dx} = \int\limits_1^4 {\left( { - {x^2} + 5x - 4} \right)dx} = \frac{9}{2}\).

c) Dựa vào đồ thị hàm số ta có \(f\left( x \right) = \left\{ \begin{array}{l}y = \frac{4}{3}x + 4\;{\rm{khi}}\; - 3 \le x < 0\\y = - x + 4\;{\rm{khi}}\;0 \le x < 1\\y = - {x^2} + 4x\;{\rm{khi}}\;1 \le x \le 4\end{array} \right.\).

\(I = \int\limits_{ - 2}^3 {f\left( x \right)dx} \)\( = \int\limits_{ - 2}^0 {f\left( x \right)dx} + \int\limits_0^1 {f\left( x \right)dx + \int\limits_1^3 {f\left( x \right)dx} } \)

\( = \int\limits_{ - 2}^0 {\left( {\frac{4}{3}x + 4} \right)dx} + \int\limits_0^1 {\left( { - x + 4} \right)dx + \int\limits_1^3 {\left( { - {x^2} + 4x} \right)dx} } \)

\( = \frac{{16}}{3} + \frac{7}{2} + \frac{{22}}{3} = \frac{{97}}{6}\).

d) Ta có \({S_2} = \int\limits_1^4 {\left| { - {x^2} + 4x} \right|dx} = \int\limits_1^4 {\left( { - {x^2} + 4x} \right)dx} = 9\).

Do đó \(3{S_1} = 2{S_2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1309

Vì hàm số bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có đồ thị là một parabol (P) có đỉnh \(S\left( {1; - 2} \right)\) và cắt trục tung tại điểm có tung độ bằng 1 nên ta có

b2a=1a+b+c=2c=1 a=3b=6c=1.Suy ra fx=3x26x+1

\(F\left( x \right) = \int {\left( {3{x^2} - 6x + 1} \right)dx} = {x^3} - 3{x^2} + x + C\).

\(F\left( 0 \right) = 1\) nên \(C = 1\). Do đó \(F\left( x \right) = {x^3} - 3{x^2} + x + 1\).

Đồ thị hàm số \(y = F\left( x \right)\) đi qua điểm \(M\left( {12;m} \right)\) nên \({12^3} - {3.12^2} + 12 + 1 = m \Leftrightarrow m = 1309\).

Câu 2

a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).
Đúng
Sai
b) Tọa độ tổng quát của tâm \(I\)\(\left( {t; - 1 + 2t; - 2 - t} \right)\).
Đúng
Sai
c) \(d\left( {I,\left( P \right)} \right) = 3\).
Đúng
Sai
d) Mặt cầu \(\left( S \right)\) có phương trình là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).

b) Vì \(I \in d\) nên \(\left( {t;1 + 2t;2 - t} \right)\).

c) Mặt cầu \(\left( S \right)\) có tâm \(I\) thuộc đường thẳng \(d\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn lớn nhất có bán kính \(r = 5\)nên giao tuyến đó là đường tròn đi qua tâm của mặt cầu.

Suy ra \(I \in \left( P \right)\)\(R = 5\).

Do đó \(d\left( {I,\left( P \right)} \right) = 0\).

d) Vì \(I \in \left( P \right)\) nên \(3.t + 1 + 2t - 2 + t - 5 = 0\)\( \Leftrightarrow t = 1\). Suy ra \(I\left( {1;3;1} \right)\).

Vậy \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).

Câu 4

a) Xác suất học sinh được chọn là học sinh giỏi bằng 0,4.
Đúng
Sai
b) Xác suất học sinh được chọn là học sinh nữ bằng 0,5.
Đúng
Sai
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng 0,6.
Đúng
Sai
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng 0,4.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP