Câu hỏi:

24/12/2025 9 Lưu

Một chiếc cổng có hình dạng là một parabol \(\left( P \right)\)có kích thước như hình vẽ, biết chiều cao cổng bằng 4 m, AB = 4 m. Người ta thiết kế cửa đi là một hình chữ nhật CDEF (với C, F AB; D, E (P)), phần còn lại (phân tô đậm) dùng để trang trí. Biết chi phí để trang trí phần tô đậm là 1 000 000 đồng/m2. Gắn hệ trục tọa độ \(Oxy\) như hình bên.

Một chiếc cổng có hình dạng là một para (ảnh 1)

Chi phí trang trí tối thiểu là bao nhiêu triệu đồng? (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

4,5

Trả lời: 4,5

Vì chiều cao của cổng bằng 4 m nên \(\left( P \right):y = a{x^2} + 4\).

\(\left( {2;0} \right) \in \left( P \right)\) nên \(0 = a{.2^2} + 4 \Leftrightarrow a = - 1\). Do đó \(y = - {x^2} + 4\).

Do đó diện tích toàn bộ chiếc cổng là \(S = \int\limits_{ - 2}^2 {\left| { - {x^2} + 4} \right|} dx = \frac{{32}}{3}\).

\(D \in \left( P \right)\) nên \(D\left( {a; - {a^2} + 4} \right),\left( {0 < a < 2} \right)\).

Suy ra \(FC = 2a;CD = 4 - {a^2}\). Do đó \({S_{CDEF}} = 2a.\left( {4 - {a^2}} \right) = 8a - 2{a^3}\).

Để chi phí phần trang trí là nhỏ nhất thì diện tích phần tô màu phải nhỏ nhất hay diện tích hình chữ nhật \(CDEF\) phải lớn nhất.

Xét hàm số \(f\left( a \right) = 8a - 2{a^3}\). Có \(f'\left( a \right) = 8 - 6{a^2} = 0 \Leftrightarrow a = \frac{{2\sqrt 3 }}{3}\)\(0 < a < 2\).

Bảng biến thiên

Một chiếc cổng có hình dạng là một para (ảnh 2)

Từ bảng biến thiên ta có diện tích \(CDEF\) lớn nhất bằng \(\frac{{32\sqrt 3 }}{9}\) khi \(a = \frac{{2\sqrt 3 }}{3}\).

Khi đó diện tích phần tô màu là \({S_1} = S - {S_{CDEF}} = \frac{{32}}{3} - \frac{{32\sqrt 3 }}{9}\).

Chi phí tối thiểu là: \(\left( {\frac{{32}}{3} - \frac{{32\sqrt 3 }}{9}} \right).1000000 \approx 4,5\) triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1309

Vì hàm số bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có đồ thị là một parabol (P) có đỉnh \(S\left( {1; - 2} \right)\) và cắt trục tung tại điểm có tung độ bằng 1 nên ta có

b2a=1a+b+c=2c=1 a=3b=6c=1.Suy ra fx=3x26x+1

\(F\left( x \right) = \int {\left( {3{x^2} - 6x + 1} \right)dx} = {x^3} - 3{x^2} + x + C\).

\(F\left( 0 \right) = 1\) nên \(C = 1\). Do đó \(F\left( x \right) = {x^3} - 3{x^2} + x + 1\).

Đồ thị hàm số \(y = F\left( x \right)\) đi qua điểm \(M\left( {12;m} \right)\) nên \({12^3} - {3.12^2} + 12 + 1 = m \Leftrightarrow m = 1309\).

Câu 2

a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).
Đúng
Sai
b) Tọa độ tổng quát của tâm \(I\)\(\left( {t; - 1 + 2t; - 2 - t} \right)\).
Đúng
Sai
c) \(d\left( {I,\left( P \right)} \right) = 3\).
Đúng
Sai
d) Mặt cầu \(\left( S \right)\) có phương trình là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).

b) Vì \(I \in d\) nên \(\left( {t;1 + 2t;2 - t} \right)\).

c) Mặt cầu \(\left( S \right)\) có tâm \(I\) thuộc đường thẳng \(d\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn lớn nhất có bán kính \(r = 5\)nên giao tuyến đó là đường tròn đi qua tâm của mặt cầu.

Suy ra \(I \in \left( P \right)\)\(R = 5\).

Do đó \(d\left( {I,\left( P \right)} \right) = 0\).

d) Vì \(I \in \left( P \right)\) nên \(3.t + 1 + 2t - 2 + t - 5 = 0\)\( \Leftrightarrow t = 1\). Suy ra \(I\left( {1;3;1} \right)\).

Vậy \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).

Câu 4

a) Xác suất học sinh được chọn là học sinh giỏi bằng 0,4.
Đúng
Sai
b) Xác suất học sinh được chọn là học sinh nữ bằng 0,5.
Đúng
Sai
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng 0,6.
Đúng
Sai
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng 0,4.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP