Câu hỏi:

24/12/2025 8 Lưu

Trong không gian với hệ tọa độ \(Oxyz\)(đơn vị trên mỗi trục tọa đô là km), một máy bay đang ở vị trí \(A\left( {3; - 2;1} \right)\) và sẽ hạ cánh ở vị trí \(B\left( {2; - 5;0} \right)\) trên đường băng. Có một đám mây được mô phỏng bởi mặt phẳng \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 16\) tại \(M\left( {\frac{{10}}{9}; - \frac{{25}}{9};\frac{7}{9}} \right)\). Tính độ cao của máy bay khi đi xuyên qua đám mây để hạ cánh (giả sử mặt đất ở vị trí máy bay đang bay được coi là mặt phẳng \(\left( {Oxy} \right)\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,4

Trả lời: 0,4

Đường thẳng \(AB\) đi qua điểm \(A\left( {3; - 2;1} \right)\) và nhận \(\overrightarrow {AB} = \left( { - 1; - 3; - 1} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\end{array} \right.\).

Mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 16\) có tâm \(I\left( {2; - 1; - 1} \right)\).

\(\overrightarrow {IM} = \left( { - \frac{8}{9}; - \frac{{16}}{9};\frac{{16}}{9}} \right) = - \frac{8}{9}\left( {1;2; - 2} \right)\).

Mặt phẳng \(\left( P \right)\) đi qua \(M\left( {\frac{{10}}{9}; - \frac{{25}}{9};\frac{7}{9}} \right)\) nhận vectơ \(\overrightarrow n = \left( {1;2; - 2} \right)\) làm vectơ pháp tuyến có phương trình là \(x + 2y - 2z + 6 = 0\).

Giả sử H là giao điểm của \(AB\) và mặt phẳng \(\left( P \right)\) khi đó tọa độ H là nghiệm của hệ

\(\left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\x + 2y - 2z + 6 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\3 - t + 2\left( { - 2 - 3t} \right) - 2\left( {1 - t} \right) + 6 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\5t = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{12}}{5}\\y = - \frac{{19}}{5}\\z = \frac{2}{5}\\t = \frac{3}{5}\end{array} \right.\). Suy ra \(H\left( {\frac{{12}}{5}; - \frac{{19}}{5};\frac{2}{5}} \right)\).

Vậy độ cao của máy bay khi đi xuyên qua đám mây để hạ cánh là 0,4 km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1309

Vì hàm số bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có đồ thị là một parabol (P) có đỉnh \(S\left( {1; - 2} \right)\) và cắt trục tung tại điểm có tung độ bằng 1 nên ta có

b2a=1a+b+c=2c=1 a=3b=6c=1.Suy ra fx=3x26x+1

\(F\left( x \right) = \int {\left( {3{x^2} - 6x + 1} \right)dx} = {x^3} - 3{x^2} + x + C\).

\(F\left( 0 \right) = 1\) nên \(C = 1\). Do đó \(F\left( x \right) = {x^3} - 3{x^2} + x + 1\).

Đồ thị hàm số \(y = F\left( x \right)\) đi qua điểm \(M\left( {12;m} \right)\) nên \({12^3} - {3.12^2} + 12 + 1 = m \Leftrightarrow m = 1309\).

Câu 2

a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).
Đúng
Sai
b) Tọa độ tổng quát của tâm \(I\)\(\left( {t; - 1 + 2t; - 2 - t} \right)\).
Đúng
Sai
c) \(d\left( {I,\left( P \right)} \right) = 3\).
Đúng
Sai
d) Mặt cầu \(\left( S \right)\) có phương trình là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).

b) Vì \(I \in d\) nên \(\left( {t;1 + 2t;2 - t} \right)\).

c) Mặt cầu \(\left( S \right)\) có tâm \(I\) thuộc đường thẳng \(d\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn lớn nhất có bán kính \(r = 5\)nên giao tuyến đó là đường tròn đi qua tâm của mặt cầu.

Suy ra \(I \in \left( P \right)\)\(R = 5\).

Do đó \(d\left( {I,\left( P \right)} \right) = 0\).

d) Vì \(I \in \left( P \right)\) nên \(3.t + 1 + 2t - 2 + t - 5 = 0\)\( \Leftrightarrow t = 1\). Suy ra \(I\left( {1;3;1} \right)\).

Vậy \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).

Câu 3

a) Xác suất học sinh được chọn là học sinh giỏi bằng 0,4.
Đúng
Sai
b) Xác suất học sinh được chọn là học sinh nữ bằng 0,5.
Đúng
Sai
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng 0,6.
Đúng
Sai
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng 0,4.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP