Trong không gian với hệ tọa độ \(Oxyz\), một cabin cáp treo xuất phát từ điểm \(A\left( {10;3;0} \right)\) và chuyển động đều theo đường cáp có vectơ chỉ phương là \(\overrightarrow u = \left( {2; - 2;1} \right)\) với tốc độ \(4,5\;{\rm{m/s}}\) (đơn vị trên mỗi trục tọa độ là mét).

Giả sử cabin dừng ở điểm B có hoành độ \({x_B} = 550\). Khi đó quãng đường AB dài bao nhiêu mét?
Trong không gian với hệ tọa độ \(Oxyz\), một cabin cáp treo xuất phát từ điểm \(A\left( {10;3;0} \right)\) và chuyển động đều theo đường cáp có vectơ chỉ phương là \(\overrightarrow u = \left( {2; - 2;1} \right)\) với tốc độ \(4,5\;{\rm{m/s}}\) (đơn vị trên mỗi trục tọa độ là mét).

Giả sử cabin dừng ở điểm B có hoành độ \({x_B} = 550\). Khi đó quãng đường AB dài bao nhiêu mét?
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 810
Phương trình đường cáp là: \(\left\{ \begin{array}{l}x = 10 + 2t\\y = 3 - 2t\\z = t\end{array} \right.\).
Vì cabin dừng ở điểm B có hoành độ \({x_B} = 550\) nên \(10 + 2t = 550 \Leftrightarrow t = 270\).
Do đó \(B\left( {550; - 537;270} \right)\).
Khi đó \(AB = \sqrt {{{\left( {550 - 10} \right)}^2} + {{\left( { - 537 - 3} \right)}^2} + {{270}^2}} = 810\)m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 1309
Vì hàm số bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có đồ thị là một parabol (P) có đỉnh \(S\left( {1; - 2} \right)\) và cắt trục tung tại điểm có tung độ bằng 1 nên ta có
.Suy ra
Có \(F\left( x \right) = \int {\left( {3{x^2} - 6x + 1} \right)dx} = {x^3} - 3{x^2} + x + C\).
Mà \(F\left( 0 \right) = 1\) nên \(C = 1\). Do đó \(F\left( x \right) = {x^3} - 3{x^2} + x + 1\).
Đồ thị hàm số \(y = F\left( x \right)\) đi qua điểm \(M\left( {12;m} \right)\) nên \({12^3} - {3.12^2} + 12 + 1 = m \Leftrightarrow m = 1309\).
Câu 2
Lời giải
a) Đ, b) S, c) S, d) Đ
a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).
b) Vì \(I \in d\) nên \(\left( {t;1 + 2t;2 - t} \right)\).
c) Mặt cầu \(\left( S \right)\) có tâm \(I\) thuộc đường thẳng \(d\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn lớn nhất có bán kính \(r = 5\)nên giao tuyến đó là đường tròn đi qua tâm của mặt cầu.
Suy ra \(I \in \left( P \right)\) và \(R = 5\).
Do đó \(d\left( {I,\left( P \right)} \right) = 0\).
d) Vì \(I \in \left( P \right)\) nên \(3.t + 1 + 2t - 2 + t - 5 = 0\)\( \Leftrightarrow t = 1\). Suy ra \(I\left( {1;3;1} \right)\).
Vậy \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
