Câu hỏi:

24/12/2025 6 Lưu

Đồ thị hàm số bậc hai \(y = f\left( x \right)\) có đỉnh là \(I\left( {1; - 1} \right)\) và đi qua điểm \(A\left( {0;1} \right)\), hàm số bậc hai đó là

A. \(y = 2{x^2} - 4x + 1\);                               

B.  \(y = 2{x^2} + 4x + 1\);

C. \(y = {x^2} - 4x + 1\);                                  
D. \(y = {x^2} + 2x + 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Gọi công thức của hàm số bậc hai cần tìm là: \(y = a{x^2} + bx + c\) (\(a \ne 0\)).

Đỉnh của đồ thị hàm số là \(I\left( {1; - 1} \right)\) nên ta có:

\(\frac{{ - b}}{{2a}} = 1 \Rightarrow 2a + b = 0\);

\( - 1 = a{.1^2} + b.1 + c \Rightarrow a + b + c =  - 1\).

Đồ thị hàm số đi qua điểm \(A\left( {0;1} \right)\) nên ta có:

\(1 = a{.0^2} + b.0 + c \Rightarrow c = 1\).

Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + b = 0\\a + b + c =  - 1\\c = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 4\\c = 1\end{array} \right.\).

Như vậy hàm số cần tìm là: \(y = 2{x^2} - 4x + 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

\(\sqrt {{x^2} - 2x + 1}  = \sqrt { - {x^2} + 3x - 1} \)

\( \Rightarrow {x^2} - 2x + 1 =  - {x^2} + 3x - 1\)

\( \Rightarrow 2{x^2} - 5x + 2 = 0\)

\( \Rightarrow \left\{ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\)

Với \(x = 2\), ta có: \(\sqrt {{2^2} - 2.2 + 1}  = 1 = \sqrt { - {2^2} + 3.2 - 1} \), do đó, \(x = 2\) là một nghiệm của phương trình đã cho.

Với \(x = \frac{1}{2}\), ta có: \(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 2.\left( {\frac{1}{2}} \right) + 1}  = \frac{1}{2} = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} + 3.\left( {\frac{1}{2}} \right) - 1} \) , do đó, \(x = \frac{1}{2}\) là một nghiệm của phương trình đã cho.

Vậy phương trình \(\sqrt {{x^2} - 2x + 1}  = \sqrt { - {x^2} + 3x - 1} \) có hai nghiệm.

Câu 2

A. Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 2);                          

B. Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 3);

C. Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 4);                      

D. Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 5).

Lời giải

Đáp án đúng là: A

Hàm số bậc hai \(y = 3{x^2} - 3\) có đồ thị phải đi qua hai điểm có tọa độ \(\left( {1;0} \right)\) và \(\left( {0; - 3} \right)\).

Do đó, đồ thị hàm số chỉ có thể là hình (A).

Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 1)

Câu 3

A. \(y = 1\);                
B. \(y =  - \frac{1}{2}\); 
C. \(y =  - 1\);             
D. \(y = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - 4;0} \right)\);                               
B. \(\left( { - 2; - 1} \right)\);          
C. \(\left( {3; + \infty } \right)\);                                      
D. \(\left( { - \infty ; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\mathbb{R}\);    
B. \(\left( {0; + \infty } \right)\);    
C. \(\left[ {0; + \infty } \right)\);                                                                        
D. \(\left[ {\sqrt 7 ; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}x = 2t\\y = 3 + t\end{array} \right.\);       
B. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + 3t\end{array} \right.\);               
C. \(\left\{ \begin{array}{l}x = 2\\y = t - 3\end{array} \right.\);                         
D. \(\left\{ \begin{array}{l}x = 2t\\y = 2 + 3t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{ - 11}}{2}\);                                    
B. \(\frac{{11}}{2}\);  
C. \(\frac{{13}}{2}\);                                  
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP