Câu hỏi:

24/12/2025 3 Lưu

Đường thẳng đi qua hai điểm \(A\left( {1;2} \right)\) và \(B\left( { - 3;5} \right)\) có phương trình tổng quát là

A. \(4x + 3y - 11 = 0\);                                    

B. \(x + y - 11 = 0\);

C. \(3x + 4y - 11 = 0\);                                      
D. \(3x + 4y + 11 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Đường thẳng \(d\) đi qua hai điểm \(A\left( {1;2} \right)\) và \(B\left( { - 3;5} \right)\) có vectơ chỉ phương \(\overrightarrow {AB}  = \left( { - 3 - 1;5 - 2} \right) = \left( { - 4;3} \right)\), do đó, \(d\) có một vectơ pháp tuyến là: \(\overrightarrow n  = \left( {3;4} \right)\).

Phương trình tổng quát của đường thẳng \(d\) là:

\(3\left( {x - 1} \right) + 4\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 4y - 11 = 0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

\(\sqrt {{x^2} - 2x + 1}  = \sqrt { - {x^2} + 3x - 1} \)

\( \Rightarrow {x^2} - 2x + 1 =  - {x^2} + 3x - 1\)

\( \Rightarrow 2{x^2} - 5x + 2 = 0\)

\( \Rightarrow \left\{ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\)

Với \(x = 2\), ta có: \(\sqrt {{2^2} - 2.2 + 1}  = 1 = \sqrt { - {2^2} + 3.2 - 1} \), do đó, \(x = 2\) là một nghiệm của phương trình đã cho.

Với \(x = \frac{1}{2}\), ta có: \(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 2.\left( {\frac{1}{2}} \right) + 1}  = \frac{1}{2} = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} + 3.\left( {\frac{1}{2}} \right) - 1} \) , do đó, \(x = \frac{1}{2}\) là một nghiệm của phương trình đã cho.

Vậy phương trình \(\sqrt {{x^2} - 2x + 1}  = \sqrt { - {x^2} + 3x - 1} \) có hai nghiệm.

Câu 2

A. Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 2);                          

B. Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 3);

C. Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 4);                      

D. Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 5).

Lời giải

Đáp án đúng là: A

Hàm số bậc hai \(y = 3{x^2} - 3\) có đồ thị phải đi qua hai điểm có tọa độ \(\left( {1;0} \right)\) và \(\left( {0; - 3} \right)\).

Do đó, đồ thị hàm số chỉ có thể là hình (A).

Cho hàm số bậc hai \(y = 3{x^2} - 3\), đồ thị của hàm số đó là (ảnh 1)

Câu 3

A. \(y = 1\);                
B. \(y =  - \frac{1}{2}\); 
C. \(y =  - 1\);             
D. \(y = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - 4;0} \right)\);                               
B. \(\left( { - 2; - 1} \right)\);          
C. \(\left( {3; + \infty } \right)\);                                      
D. \(\left( { - \infty ; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\mathbb{R}\);    
B. \(\left( {0; + \infty } \right)\);    
C. \(\left[ {0; + \infty } \right)\);                                                                        
D. \(\left[ {\sqrt 7 ; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}x = 2t\\y = 3 + t\end{array} \right.\);       
B. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + 3t\end{array} \right.\);               
C. \(\left\{ \begin{array}{l}x = 2\\y = t - 3\end{array} \right.\);                         
D. \(\left\{ \begin{array}{l}x = 2t\\y = 2 + 3t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{ - 11}}{2}\);                                    
B. \(\frac{{11}}{2}\);  
C. \(\frac{{13}}{2}\);                                  
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP