Câu hỏi:

24/12/2025 7 Lưu

Cho hàm số \(y = f\left( x \right) = {x^2} - 2x + 4\), khẳng định nào sau đây là đúng?

A. Hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\);

B. Hàm số nghịch biến trên khoảng \(\left( {1; + \infty } \right)\), đồng biến trên khoảng \(\left( { - \infty ;1} \right)\);

C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\);

D. Hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\), đồng biến trên khoảng \(\left( { - \infty ;2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Hàm số \(y = f\left( x \right) = {x^2} - 2x + 4\) có: \(a = 1 > 0\), \(b =  - 2\), \(c = 4\).

Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - \left( { - 2} \right)}}{{2.1}} = 1\).

Như vậy, hàm số nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\), đồng biến trên khoảng \(\left( {1; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Bạn đó giải sai phương trình ở bước 2 do bạn chưa thử lại các giá trị \(x\) đã tìm được có thỏa mãn phương trình đã cho hay không mà đã kết luận nghiệm.

Dễ thấy, \(x =  - 2\) không thỏa mãn vì – 2 – 1 = – 3 < 0, và \(x = 5\) thỏa mãn, do đó, tập nghiệm đúng của phương trình là \(S = \left\{ 5 \right\}\).

Câu 2

A. \(f\left( x \right)\) luôn dương trên tập số thực; 

B. \(f\left( x \right)\) luôn âm trên tập số thực;

C. \(f\left( x \right)\) luôn không dương trên tập số thực;

D. \(f\left( x \right)\) luôn không âm trên tập số thực.

Lời giải

Đáp án đúng là: D

Tam thức bậc  hai \(f\left( x \right) = a{x^2} + bx + c\) có \(a > 0\) và \(\Delta  \ge 0\). Khi đó, \(f\left( x \right)\) luôn không âm trên tập số thực hay \(f\left( x \right) \ge 0\forall x \in \mathbb{R}\).

Câu 3

A. \(d\left( {A,\Delta } \right) = \frac{{\left| {3d - 4e + f} \right|}}{{\sqrt {{d^2} + {e^2}} }}\);                                                                       

B. \(d\left( {A,\Delta } \right) = \frac{{3d - 4e + f}}{{\sqrt {{d^2} + {e^2}} }}\);

C. \(d\left( {A,\Delta } \right) = \frac{{3d - 4e + f}}{{\sqrt {{3^2} + {4^2}} }}\);   
D. \(d\left( {A,\Delta } \right) = \frac{{\left| {3d - 4e + f} \right|}}{{\sqrt {{3^2} + {4^2}} }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(s\left( t \right) = 5t\) (km);                                                         

B. \(s\left( t \right) = 5t\) (h);                     

C. \(s\left( t \right) = 25t\) (km);                                                        
D. \(s\left( t \right) = 25t\) (h).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Đường thẳng;                                             

B. Đường cong hypebol;

C. Đường cong parabol;                                    
D. Đường elip.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = f\left( x \right) = 2{x^2} - 3x - 1\);      

B. \(y = f\left( x \right) = 2{x^2} - 3x + 5\);

C. \(y = f\left( x \right) = 2{x^2} - 3x\);            
D. \(y = f\left( x \right) = 2{x^2} + 3x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(f\left( x \right) = 4x - 5{x^2}\);                

B. \(f\left( x \right) = 2 + 3{x^2} - 2x\);

C. \(f\left( x \right) = {x^2} - 4\);                     
D. \(f\left( x \right) = {x^3} - 4{x^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP