Câu hỏi:

24/12/2025 49 Lưu

Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \[\alpha \] là góc giữa \[AC'\] và mặt phẳng \[\left( {A'BCD'} \right)\]. Chọn khẳng định đúng trong các khẳng định sau?        

A. \[\alpha {\rm{ }} = {\rm{ }}30^\circ .\]     
B. \(\tan \alpha = \frac{2}{{\sqrt 3 }}.\)  
C. \[\alpha {\rm{ }} = {\rm{ }}45^\circ .\]     
D. \(\tan \alpha = \sqrt 2 .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Đáp án đúng là: D (ảnh 1)

 

Gọi \[\left\{ \begin{array}{l}A'C \cap AC' = I\\C'D \cap CD' = H\end{array} \right.\] .

\(ABCD.A'B'C'D'\) là hình lập phương nên ta chứng minh được  \(\left\{ \begin{array}{l}C'D \bot CD'\\C'D \bot A'D'\end{array} \right.\)\( \Rightarrow C'D \bot \left( {A'BCD'} \right) \Rightarrow IH\) là hình chiếu vuông góc của \(AC'\) lên \(\left( {A'BCD'} \right)\).

\( \Rightarrow \widehat {C'IH}\) là góc giữa \(AC'\)\(\left( {A'BCD'} \right).\)

Giả sử hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\).

Khi đó ta có \[C'H = \frac{{C'D}}{2} = \frac{{a\sqrt 2 }}{2}\], \(IH = \frac{{A'D'}}{2} = \frac{a}{2}\).

Tam giác \(C'IH\) vuông tại \[H\]\(\tan \widehat {C'IH} = \frac{{C'H}}{{IH}} = \frac{{a\sqrt 2 }}{2}:\frac{a}{2} = \sqrt 2 .\)

Vậy \(\tan \alpha = \sqrt 2 .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[P = a\].             
B. \[P = {a^3}\].      
C. \[P = {a^4}\].                            
D. \[P = {a^5}\].

Lời giải

Đáp án đúng là: D

\[P = \frac{{{a^{\sqrt 3 + 1}} \cdot {a^{2 - \sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 - 2}}} \right)}^{\sqrt 2 + 2}}}} = \frac{{{a^{\sqrt 3 + 1 + 2 - \sqrt 3 }}}}{{{a^{\left( {\sqrt 2 - 2} \right)\left( {\sqrt 2 + 2} \right)}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}\].

Câu 2

A. \(\frac{3}{4}\).   
B. \(3\).                    
C. \(\frac{3}{2}\).                
D. \(\frac{1}{4}\).

Lời giải

Đáp án đúng là: A

Ta có \({\log _{{a^2}}}\left( {a\sqrt a } \right) = {\log _{{a^2}}}\left( {{a^{\frac{3}{2}}}} \right) = \frac{1}{2} \cdot \frac{3}{2} \cdot {\log _a}a = \frac{3}{4}\).

Câu 5

A. \[\frac{{3a}}{{\sqrt 7 }}.\]                
B. \[\frac{{3a\sqrt 2 }}{2}.\]                                
C. \[\frac{{2a}}{{\sqrt 5 }}.\]                              
D. \[\frac{{2a\sqrt 3 }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP