Câu hỏi:

24/12/2025 7 Lưu

Trong các mệnh đề sau, mệnh đề nào đúng?

A. Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau.
B. Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
C. Các mặt phẳng cùng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước thì luôn đi qua một đường thẳng cố định.
D. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Xét từng đáp án, ta thấy:

+ Đáp án A sai vì hai mặt phẳng đó có thể trùng nhau.

+ Đáp án B sai vì nếu cho trước 1 đường thẳng \(d\) và lấy 1 điểm \(M\) bất kì nằm trên \(d\), khi đó ta xác định được duy nhất 1 mặt phẳng \(\left( P \right)\) qua M và vuông góc với \(d\). Nhưng do điểm \(M\) là tuỳ ý trên \(d\) nên sẽ có vô số mặt phẳng vuông góc với đường thẳng \(d\) cho trước đó.

+ Đáp án C đúng.

+ Đáp án D sai do hai mặt phẳng đó có thể trùng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

\({\log _3}\left( {{3^a} \cdot {9^b}} \right) = {\log _9}3 \Rightarrow {\log _3}\left( {{3^a}} \right) + {\log _3}\left( {{9^b}} \right) = \frac{1}{2}\)\( \Rightarrow a + 2b = \frac{1}{2} \Rightarrow 2a + 4b = 1\).

Lời giải

a) Ta có \({\log _3}a = 2 \Rightarrow a = { (ảnh 1)

a) Ta có \(\left. \begin{array}{l}BC \bot AB\\BC \bot SA{\rm{ }}\left( {do{\rm{ SA}} \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\).

\(\left. \begin{array}{l}BC \bot \left( {SAB} \right)\\SB \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow BC \bot SB\).

b) Kẻ \(AM \bot BD\,\,\,\left( {M \in BD} \right)\).

Khi đó, \(BD \bot \left( {SAM} \right)\) (do \(\left\{ \begin{array}{l}BD \bot SA\\BD \bot AM\end{array} \right.\)).

Suy ra \(BD \bot SM\). Khi đó \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {A,BD,S} \right]\).

Ta có \(AM = \frac{{AB \cdot AD}}{{BD}} = \frac{{a\sqrt 3 }}{2}\), \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{{2a}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{4\sqrt 3 }}{3}\).

Vậy tan của góc nhị diện \(\left[ {A,BD,S} \right]\) bằng \(\frac{{4\sqrt 3 }}{3}\).

Câu 5

A. \[P = a\].             
B. \[P = {a^3}\].      
C. \[P = {a^4}\].                            
D. \[P = {a^5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\left( {{x^a}} \right)^b} = {x^{ab}}\).                      
B. \({\left( {{x^a}} \right)^b} = {x^{a + b}}\).                  
C. \({\left( {{x^a}} \right)^b} = {x^{\frac{b}{a}}}\).        
D. \({\left( {{x^a}} \right)^b} = {x^{{a^b}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {1; + \infty } \right)\].            
B. \[\left( { - \infty ;\frac{1}{2}} \right)\].                          
C. \[\left( {\frac{1}{2}; + \infty } \right)\].                    
D. \[\left[ {\frac{1}{2}; + \infty } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP