Câu hỏi:

24/12/2025 4 Lưu

Khoảng cách giữa hai đường thẳng chéo nhau là

A. độ dài đoạn vuông góc chung của hai đường thẳng đó.
B. độ dài đoạn vuông góc của hai đường thẳng đó.
C. khoảng cách từ một điểm bất kỳ của đường thẳng này đến đường thẳng kia.
D. khoảng cách từ một điểm bất kỳ của đường thẳng này đến một điểm bất kì của đường thẳng kia.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Khoảng cách giữa hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

\({\log _3}\left( {{3^a} \cdot {9^b}} \right) = {\log _9}3 \Rightarrow {\log _3}\left( {{3^a}} \right) + {\log _3}\left( {{9^b}} \right) = \frac{1}{2}\)\( \Rightarrow a + 2b = \frac{1}{2} \Rightarrow 2a + 4b = 1\).

Lời giải

a) Ta có \({\log _3}a = 2 \Rightarrow a = { (ảnh 1)

a) Ta có \(\left. \begin{array}{l}BC \bot AB\\BC \bot SA{\rm{ }}\left( {do{\rm{ SA}} \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\).

\(\left. \begin{array}{l}BC \bot \left( {SAB} \right)\\SB \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow BC \bot SB\).

b) Kẻ \(AM \bot BD\,\,\,\left( {M \in BD} \right)\).

Khi đó, \(BD \bot \left( {SAM} \right)\) (do \(\left\{ \begin{array}{l}BD \bot SA\\BD \bot AM\end{array} \right.\)).

Suy ra \(BD \bot SM\). Khi đó \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {A,BD,S} \right]\).

Ta có \(AM = \frac{{AB \cdot AD}}{{BD}} = \frac{{a\sqrt 3 }}{2}\), \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{{2a}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{4\sqrt 3 }}{3}\).

Vậy tan của góc nhị diện \(\left[ {A,BD,S} \right]\) bằng \(\frac{{4\sqrt 3 }}{3}\).

Câu 5

A. \[P = a\].             
B. \[P = {a^3}\].      
C. \[P = {a^4}\].                            
D. \[P = {a^5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\left( {{x^a}} \right)^b} = {x^{ab}}\).                      
B. \({\left( {{x^a}} \right)^b} = {x^{a + b}}\).                  
C. \({\left( {{x^a}} \right)^b} = {x^{\frac{b}{a}}}\).        
D. \({\left( {{x^a}} \right)^b} = {x^{{a^b}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {1; + \infty } \right)\].            
B. \[\left( { - \infty ;\frac{1}{2}} \right)\].                          
C. \[\left( {\frac{1}{2}; + \infty } \right)\].                    
D. \[\left[ {\frac{1}{2}; + \infty } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP