Câu hỏi:

24/12/2025 47 Lưu

(1,0 điểm) Cho hình chóp \[S.ABC\] có đáy là tam giác đều cạnh \[a,{\rm{ }}SA\] vuông góc với mặt phẳng \[\left( {ABC} \right)\], góc giữa \[SB\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[60^\circ \], \[M\] là trung điểm của \[AB.\] Tính khoảng cách giữa hai đường thẳng \[SM{\rm{ v\`a }}BC\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \(\left. \begin{array}{l} (ảnh 1)

Gọi \(N,I\) lần lượt là trung điểm của \(AC,BC\).

\(MN\) là đường trung bình của \(\Delta ABC\) \( \Rightarrow MN\,{\rm{//}}\,BC\)\( \Rightarrow BC\,{\rm{//}}\,\left( {SMN} \right)\).

Khi đó ta có \(d\left( {BC,SM} \right) = d\left( {BC,\left( {SMN} \right)} \right) = d\left( {I,\left( {SMN} \right)} \right)\)\( = d\left( {A,\left( {SMN} \right)} \right)\).

Dễ thấy \(BC \bot \left( {SAI} \right) \Rightarrow MN \bot \left( {SAI} \right) \Rightarrow \left( {SMN} \right) \bot \left( {SAI} \right)\) theo giao tuyến \(SH\) với \(H\) là giao điểm của \(MN\)\(AI\).

Trong mặt phẳng \(\left( {SAI} \right)\) kẻ \(AK \bot SH\)\(\left( {K \in SH} \right)\)\( \Rightarrow AK \bot \left( {SMN} \right)\).

Vậy \(d\left( {BC,SM} \right) = d\left( {A,\left( {SMN} \right)} \right) = AK\).

Ta có \(AI = \frac{{a\sqrt 3 }}{2} \Rightarrow AH = \frac{1}{2}AI = \frac{{a\sqrt 3 }}{4}\).

Vì \(SA \bot \left( {ABC} \right)\) nên \(\left( {SB,\left( {ABC} \right)} \right) = \left( {SB,AB} \right) = \widehat {SBA} = 60^\circ \)\( \Rightarrow SA = AB\tan 60^\circ = a\sqrt 3 .\)

Ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{H^2}}} = \frac{1}{{3{a^2}}} + \frac{{16}}{{3{a^2}}} = \frac{{17}}{{3{a^2}}}\)\( \Rightarrow AK = \frac{{a\sqrt {51} }}{{17}}\).

Vậy \(d\left( {BC,SM} \right) = \frac{{a\sqrt {51} }}{{17}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[P = a\].             
B. \[P = {a^3}\].      
C. \[P = {a^4}\].                            
D. \[P = {a^5}\].

Lời giải

Đáp án đúng là: D

\[P = \frac{{{a^{\sqrt 3 + 1}} \cdot {a^{2 - \sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 - 2}}} \right)}^{\sqrt 2 + 2}}}} = \frac{{{a^{\sqrt 3 + 1 + 2 - \sqrt 3 }}}}{{{a^{\left( {\sqrt 2 - 2} \right)\left( {\sqrt 2 + 2} \right)}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}\].

Câu 2

A. \(\frac{3}{4}\).   
B. \(3\).                    
C. \(\frac{3}{2}\).                
D. \(\frac{1}{4}\).

Lời giải

Đáp án đúng là: A

Ta có \({\log _{{a^2}}}\left( {a\sqrt a } \right) = {\log _{{a^2}}}\left( {{a^{\frac{3}{2}}}} \right) = \frac{1}{2} \cdot \frac{3}{2} \cdot {\log _a}a = \frac{3}{4}\).

Câu 5

A. \[\frac{{3a}}{{\sqrt 7 }}.\]                
B. \[\frac{{3a\sqrt 2 }}{2}.\]                                
C. \[\frac{{2a}}{{\sqrt 5 }}.\]                              
D. \[\frac{{2a\sqrt 3 }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP