Câu hỏi:

24/12/2025 48 Lưu

Cho hai mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\). Phát biểu nào sau đây đúng?         

A. Nếu \(\left( \alpha \right)\) cắt \(\left( \beta \right)\) thì \(\left( \alpha \right) \bot \left( \beta \right)\).                                                                                                   
B. Nếu \(\left( {\left( \alpha \right),\left( \beta \right)} \right) = 0^\circ \) thì \(\left( \alpha \right) \bot \left( \beta \right)\).         
C. Nếu \(\left( {\left( \alpha \right),\left( \beta \right)} \right) = 45^\circ \) thì \(\left( \alpha \right) \bot \left( \beta \right)\).                          
D. Nếu \(\left( {\left( \alpha \right),\left( \beta \right)} \right) = 90^\circ \) thì \(\left( \alpha \right) \bot \left( \beta \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Nếu góc giữa hai mặt phẳng bằng \(90^\circ \) thì hai mặt phẳng đó vuông góc với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).

Do đó, góc giữa \(SC\) với mặt phẳng \(\left( {SAB} \right)\)\(\widehat {CSB}\).

Tam giác \(SAB\) vuông tại \(A\)\(SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {{a^2} + {{\left( {a\sqrt 2 } \right)}^2}} = a\sqrt 3 \).

Ta có \[BC = AD = a\].

Tam giác \(SBC\) vuông tại \(B\)\(\tan \widehat {CSB} = \frac{{BC}}{{SB}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }}\). Suy ra \(\widehat {CSB} = 30^\circ \).

Câu 2

A. \(45^\circ \).       
B. \(90^\circ \).      
C. \(60^\circ \).     
D. \(30^\circ \).

Lời giải

Đáp án đúng là: A

\(ABCD.A'B'C'D'\) là hình lập phương nên ta có:

+) \(ABCD\) là hình vuông, suy ra \(DC \bot BC\).

+) \(BC \bot \left( {DCC'D'} \right)\), suy ra \(BC \bot D'C\).

Từ đó suy ra, góc \(DCD'\) là một góc phẳng của góc nhị diện \(\left( {D,BC,D'} \right)\).

\(DCC'D'\) là hình vuông nên \(\widehat {DCD'} = 45^\circ \).

Vậy góc nhị diện \(\left( {D,BC,D'} \right)\) có số đo bằng \(45^\circ \).

Câu 5

A. \(\frac{1}{2} + {\log _3}a\).              
B. \(2{\log _3}a\).                              
C. \({\left( {{{\log }_3}a} \right)^2}\).                   
D. \(2 + {\log _3}a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(AC \bot (SAD)\).                             
B. \(MN \bot \left( {SBD} \right)\).     
C. \(BD \bot (SCD)\).                           
D. \(MN \bot \left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\sqrt {{{10}^\alpha }} = {\left( {\sqrt {10} } \right)^\alpha }\].           
B. \[\sqrt {{{10}^\alpha }} = {10^{\frac{\alpha }{2}}}\].                             
C. \[{\left( {{{10}^\alpha }} \right)^2} = {\left( {100} \right)^\alpha }\].   
D. \[{\left( {{{10}^\alpha }} \right)^2} = {\left( {10} \right)^{{\alpha ^2}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP