Cho hình lăng trụ tam giác \[ABC.A'B'C'\] có các cạnh bên hợp với đáy những góc bằng \[60^\circ \], đáy \[ABC\] là tam giác đều cạnh \(a\) và \[A'\] cách đều \[A\], \[B\], \[C\]. Khoảng cách giữa hai đáy của hình lăng trụ là
Quảng cáo
Trả lời:
Đáp án đúng là: A

Vì \[\Delta ABC\] đều và \[AA' = A'B = A'C \Rightarrow A'.ABC\] là hình chóp đều.
Gọi \[A'H\] là chiều cao của lăng trụ, suy ra \(H\) là trọng tâm \[\Delta ABC\], \[\widehat {A'AH} = 60^\circ \].
Gọi \(M\) là trung điểm của \(BC\).
Tam giác \[ABC\] là tam giác đều cạnh \(a\) nên \(AM = \frac{{a\sqrt 3 }}{2}\).
Suy ra \(AH = \frac{2}{3}AM = \frac{2}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).
Tam giác \(A'AH\) vuông tại \(H\) có \[A'H = AH \cdot \tan 60^\circ = \frac{{a\sqrt 3 }}{3} \cdot \sqrt 3 = a\].
Vậy \(d\left( {\left( {ABC} \right),\,\left( {A'B'C'} \right)} \right) = d\left( {A',\,\left( {ABC} \right)} \right) = A'H = a\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Biểu thức \[{\log _2}x\] có nghĩa khi \(x > 0\).
Vậy tập xác định của hàm số \[y = {\log _2}x\] là \(D = \left( {0; + \infty } \right).\)
Lời giải

a) Vì tam giác \(ABC\) cân tại \(A\) có \(AI\) là trung tuyến nên \(AI\) đồng thời là đường cao, do đó \(AI \bot BC\). (1)
Vì tam giác \(BCD\) cân tại \(D\) có \(DI\) là trung tuyến nên \(DI\) đồng thời là đường cao, do đó \(DI \bot BC\). (2)
Từ (1) và (2) suy ra \(BC \bot \left( {AID} \right)\).
b) Vì \(AH\) là đường cao của tam giác \(AID\) nên \(AH \bot ID\).
Lại có \(BC \bot \left( {AID} \right)\) nên \(BC \bot AH\).
Ta có \(\left\{ \begin{array}{l}AH \bot ID\\AH \bot BC\\ID,\,BC \subset \left( {BCD} \right)\\ID \cap BC = I\end{array} \right. \Rightarrow AH \bot \left( {BCD} \right)\).
Từ đó suy ra \(AH \bot BD\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.