Cho hình lăng trụ tam giác \[ABC.A'B'C'\] có các cạnh bên hợp với đáy những góc bằng \[60^\circ \], đáy \[ABC\] là tam giác đều cạnh \(a\) và \[A'\] cách đều \[A\], \[B\], \[C\]. Khoảng cách giữa hai đáy của hình lăng trụ là
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A

Vì \[\Delta ABC\] đều và \[AA' = A'B = A'C \Rightarrow A'.ABC\] là hình chóp đều.
Gọi \[A'H\] là chiều cao của lăng trụ, suy ra \(H\) là trọng tâm \[\Delta ABC\], \[\widehat {A'AH} = 60^\circ \].
Gọi \(M\) là trung điểm của \(BC\).
Tam giác \[ABC\] là tam giác đều cạnh \(a\) nên \(AM = \frac{{a\sqrt 3 }}{2}\).
Suy ra \(AH = \frac{2}{3}AM = \frac{2}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).
Tam giác \(A'AH\) vuông tại \(H\) có \[A'H = AH \cdot \tan 60^\circ = \frac{{a\sqrt 3 }}{3} \cdot \sqrt 3 = a\].
Vậy \(d\left( {\left( {ABC} \right),\,\left( {A'B'C'} \right)} \right) = d\left( {A',\,\left( {ABC} \right)} \right) = A'H = a\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Vì \(ABCD.A'B'C'D'\) là hình lập phương nên ta có:
+) \(ABCD\) là hình vuông, suy ra \(DC \bot BC\).
+) \(BC \bot \left( {DCC'D'} \right)\), suy ra \(BC \bot D'C\).
Từ đó suy ra, góc \(DCD'\) là một góc phẳng của góc nhị diện \(\left( {D,BC,D'} \right)\).
Vì \(DCC'D'\) là hình vuông nên \(\widehat {DCD'} = 45^\circ \).
Vậy góc nhị diện \(\left( {D,BC,D'} \right)\) có số đo bằng \(45^\circ \).
Lời giải
Số vi khuẩn ban đầu có 1 000 con và sau 10 giờ là 5 000 con. Áp dụng công thức \(f\left( t \right) = A{e^{rt}}\), ta có: \(f\left( {10} \right) = 1\,000{e^{r \cdot 10}} = 5000\). Suy ra \(r = \frac{{\ln 5}}{{10}}\).
Giả sử \(t\) là thời gian để số lượng vi khuẩn tăng gấp 10 lần.
Khi đó ta có: \(10\,000 = 1\,000{e^{rt}} \Leftrightarrow {e^{rt}} = 10 \Leftrightarrow rt = \ln 10 \Leftrightarrow t = \frac{{\ln 10}}{r}\)
Do đó, \(t = \ln 10:\frac{{\ln 5}}{{10}} = \frac{{10\ln 10}}{{\ln 5}} = 10{\log _5}10 \approx 14,31\).
Vậy sau khoảng 14,31 giờ thì số lượng vi khuẩn tăng gấp 10 lần.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

