Câu hỏi:

24/12/2025 7 Lưu

a) Rút gọn biểu thức:

        \(A = \frac{{{x^2} + 8\sqrt x }}{{x - 2\sqrt x  + 4}} + \frac{{2x + \sqrt x }}{{\sqrt x }} + \frac{{16 - 4x}}{{\sqrt x  + 2}}\)với \(\begin{array}{l}\\x > 0\\\end{array}\)

b) Một khay nước có nhiệt độ \({125^0}\)F khi bắt đầu cho vào tủ đá.Ở trong tủ đá,cứ sau mỗi giờ, nhiệt độ của khay nước lại giảm đi 20%. Hỏi sau bao nhiêu giờ, nhiệt độ của khay nước chỉ còn là \({64^0}\)F ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)  A \( = \) \(\frac{{{x^2} + 8\sqrt x }}{{x - 2\sqrt x + 4}} + \frac{{2x + \sqrt x }}{{\sqrt x }} + \frac{{16 - 4x}}{{\sqrt x + 2}} = \frac{{\sqrt x .\left( {\sqrt {{x^3}} + 8} \right)}}{{x - 2\sqrt x + 4}} + \) \(2\sqrt x + 1 + 4\left( {2 - \sqrt x {\rm{\;}}} \right)\)

         \( = {\rm{\;}}\sqrt x .\left( {\sqrt x + 2} \right) + 2\sqrt x + 1 + 4\left( {2 - \sqrt x {\rm{\;}}} \right) = x + 9\)

 Vậy A \( = x + 9\)

b) Sau 1 giờ nhiệt độ của khay nước là \({125^{\rm{o}}}.80\% = {100^{\rm{o}}}\).

    Sau 2 giờ nhiệt độ của khay nước là \({100^{\rm{o}}}.80\% = {80^{\rm{o}}}\).

Sau 3 giờ nhiệt độ của khay nước là \({80^{\rm{o}}}.80\% = {64^{\rm{o}}}\).

Dễ thấy nếu hơn 3 giờ thì nhiệt độ khay nước sẽ giảm xuống thấp hơn \({64^{\rm{o}}}{\rm{F}}\).

Vậy số giờ cần tìm là 3 giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \({x^2} - (2m + 1)x - ({m^2} + 1) = 0\)

Các hệ số \(a = 1,b =  - (2m + 1),c =  - ({m^2} + 1)\)

Vì \(ac =  - ({m^2} + 1) < 0\) nên phương trình (1) luôn có 2 nghiệm.

 Hệ thức liên hệ không phụ thuộc vào m cần tìm là:\({x_1}.{x_2} + \frac{{{{({x_1} + {x_2} + 1)}^2}}}{4} + 1 = 0\)

b) Vì (P) \(y = a{x^2}\) đi qua điểm \(M( - 1,\frac{1}{2})\) nên \(a = \frac{1}{2}\)

Gọi toạ độ của M là \(({x_0},{y_0}) \Rightarrow {y_0} = \frac{1}{2}.{x_0}^2\)

Theo giả thiết đề bài ta suy ra:\(\left| {{x_0}} \right| = 2.\left| {{y_0}} \right| \Rightarrow \left| {{x_0}} \right| = {x_0}^2 \Rightarrow {x_0} \in \left\{ {0; \pm 1} \right\}\)

Do đó toạ độ điểm M cần tìm là \((0,0);(1,\frac{1}{2});( - 1,\frac{1}{2})\).

Lời giải

Cho hình bình hành\(ABCD\) có \(\widehat {ABC}\)\( = {120^0}\)và\(BC = 2AB\).Dựng (ảnh 1)

a) Đặt \(AB = a,BC = 2a\).Vì \(\widehat {ABC} = {120^0}\)\( \Rightarrow \)\(\widehat {BAD} = {60^0}\).

Áp dụng định lí cosin vào \(\Delta ABD\)ta có:

 \(\begin{array}{l}B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos BAD\\ = {a^2} + 4{a^2} - 2.2a.a.\cos 60\\ = 5{a^2} - 2{a^2} = 3{a^2} \Rightarrow B{D^2} + A{B^2} = A{D^2}\end{array}\)

 Do đó\(\Delta ABD\)là tam giác vuông theo định lí Pytago đảo.

b) Vì \(\Delta ABD\)là tam giác vuông nên \(OB \bot AE\)nên B là trung điểm của AE.

Mặt khác \(BH//AF\)nên theo tính chất đường trung bình ta có H là trung điểm của EF\\(\widehat {OHF} = {90^0} = \widehat {OBE}\)\(OBEH\)nội tiếp (ĐPCM).

c) Ta có: \(\widehat {CHS} = \widehat {BHE}.\)Vì OBEH nội tiếp nên \(\widehat {BHE} = \widehat {BOE} = \widehat {BOA} = \widehat {COS}\)

\( \Rightarrow \) OHCS nội tiếp.  

\( \Rightarrow \)\(\widehat {SCO} = \widehat {SHO} = {90^0}\).Từ đây ta có SC là tiếp tuyến của (O) (ĐPCM).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP