Câu hỏi:

24/12/2025 47 Lưu

Có hay không các số nguyên\(a,b\)sao cho

\({(a + b\sqrt {2023} )^2} = 2024 + 2023\sqrt {2023} ?\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử tồn tại các số nguyên a,b thoả mãn đề bài.

Khi đó \({(a + b\sqrt {2023} )^2} = 2024 + 2023\sqrt {2023} \)

\(\begin{array}{l} \Rightarrow {a^2} + 2ab.\sqrt {2023}  + 2023{b^2} = 2024 + 2023\sqrt {2023} \\ \Rightarrow {a^2} + 2023{b^2} - 2024 = 2023\sqrt {2023}  - 2ab.\sqrt {2023} \\ \Rightarrow {a^2} + 2023{b^2} - 2024 = \sqrt {2023} (2023 - 2ab)\end{array}\)

Vì \({a^2} + 2023{b^2} - 2024\) là số hữu tỉ, còn \(\sqrt {2023} \left( {2023 - 2ab} \right)\) là số vô tỉ nên

\(2ab = 2023\). Điều này là vô lí vì 1 vế là chẵn 1 vế là lẻ.Suy ra giả sử trên sai.Vậy không tồn tại các số nguyên a,b thoả mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành\(ABCD\) có \(\widehat {ABC}\)\( = {120^0}\)và\(BC = 2AB\).Dựng (ảnh 1)

a) Đặt \(AB = a,BC = 2a\).Vì \(\widehat {ABC} = {120^0}\)\( \Rightarrow \)\(\widehat {BAD} = {60^0}\).

Áp dụng định lí cosin vào \(\Delta ABD\)ta có:

 \(\begin{array}{l}B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos BAD\\ = {a^2} + 4{a^2} - 2.2a.a.\cos 60\\ = 5{a^2} - 2{a^2} = 3{a^2} \Rightarrow B{D^2} + A{B^2} = A{D^2}\end{array}\)

 Do đó\(\Delta ABD\)là tam giác vuông theo định lí Pytago đảo.

b) Vì \(\Delta ABD\)là tam giác vuông nên \(OB \bot AE\)nên B là trung điểm của AE.

Mặt khác \(BH//AF\)nên theo tính chất đường trung bình ta có H là trung điểm của EF\\(\widehat {OHF} = {90^0} = \widehat {OBE}\)\(OBEH\)nội tiếp (ĐPCM).

c) Ta có: \(\widehat {CHS} = \widehat {BHE}.\)Vì OBEH nội tiếp nên \(\widehat {BHE} = \widehat {BOE} = \widehat {BOA} = \widehat {COS}\)

\( \Rightarrow \) OHCS nội tiếp.  

\( \Rightarrow \)\(\widehat {SCO} = \widehat {SHO} = {90^0}\).Từ đây ta có SC là tiếp tuyến của (O) (ĐPCM).

Lời giải

a) \({x^2} - (2m + 1)x - ({m^2} + 1) = 0\)

Các hệ số \(a = 1,b =  - (2m + 1),c =  - ({m^2} + 1)\)

Vì \(ac =  - ({m^2} + 1) < 0\) nên phương trình (1) luôn có 2 nghiệm.

 Hệ thức liên hệ không phụ thuộc vào m cần tìm là:\({x_1}.{x_2} + \frac{{{{({x_1} + {x_2} + 1)}^2}}}{4} + 1 = 0\)

b) Vì (P) \(y = a{x^2}\) đi qua điểm \(M( - 1,\frac{1}{2})\) nên \(a = \frac{1}{2}\)

Gọi toạ độ của M là \(({x_0},{y_0}) \Rightarrow {y_0} = \frac{1}{2}.{x_0}^2\)

Theo giả thiết đề bài ta suy ra:\(\left| {{x_0}} \right| = 2.\left| {{y_0}} \right| \Rightarrow \left| {{x_0}} \right| = {x_0}^2 \Rightarrow {x_0} \in \left\{ {0; \pm 1} \right\}\)

Do đó toạ độ điểm M cần tìm là \((0,0);(1,\frac{1}{2});( - 1,\frac{1}{2})\).