Câu hỏi:

25/12/2025 70 Lưu

Cho ba số \(a\), \(b\), \(c\) dương và khác \(1\). Các hàm số \(y = {\log _a}x\), \(y = {\log _b}x\), \(y = {\log _c}x\) có đồ thị như hình vẽ sau:

Đáp án đúng là: D Tập xác định của hàm số \(y = {\log _3}x\) là \(\left( {0\,;\, + \infty } \right)\). (ảnh 1)

Khẳng định nào dưới đây đúng?

A. \(a > c > b\).       
B. \(a > b > c\).      
C. \(c > b > a\).  
D. \(b > c > a\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Đáp án đúng là: D Tập xác định của hàm số \(y = {\log _3}x\) là \(\left( {0\,;\, + \infty } \right)\). (ảnh 2)

Kẻ đường thẳng \(d:\,\,y = 1\).

Hoành độ giao điểm của \(d\) với các đồ thị hàm số \(y = {\log _a}x\), \(y = {\log _b}x\), \(y = {\log _c}x\) lần lượt là \(a,\,\,b,\,\,c\).

Dựa vào đồ thị hàm số ta thấy \(a > c > b\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(5{\log _a}b\).   
B. \(\frac{1}{5} + {\log _a}b\).                             
C. \(5 + {\log _a}b\).                             
D. \(\frac{1}{5}{\log _a}b\).

Lời giải

Đáp án đúng là: D

Ta có \({\log _{{a^5}}}b = \frac{1}{5}{\log _a}b\).

Câu 2

A. \(\sqrt[3]{{{a^2}}}\).                          
B. \({a^{\frac{8}{3}}}\).      
C. \({a^{\frac{3}{8}}}\).      
D. \(\sqrt[6]{a}\).

Lời giải

Đáp án đúng là: C

Ta có \(\sqrt[8]{{{a^3}}} = {a^{\frac{3}{8}}}\).

Câu 3

A. \(0 < a < 1,\,0 < b < 1\).                     
B. \(0 < a < 1,\,b > 1\).                                        
C. \(a > 1,\,0 < b < 1\).                                   
D. \(a > 1,\,b > 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[6\].                    
B. Vô số.                 
C. \[0\]. 
D. \[4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(SC \bot \left( {AFB} \right)\).        
B. \(SC \bot \left( {AEC} \right)\).              
C. \(SC \bot \left( {AED} \right)\).                          
D. \(SC \bot \left( {AEF} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP