Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {4x - 9} \right) > {\log _{\frac{1}{2}}}\left( {x + 10} \right)\) là
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Điều kiện: \[\left\{ \begin{array}{l}4x - 9 > 0\\x + 10 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > \frac{9}{4}\\x > - 10\end{array} \right. \Leftrightarrow x > \frac{9}{4}\].
\({\log _{\frac{1}{2}}}\left( {4x - 9} \right) > {\log _{\frac{1}{2}}}\left( {x + 10} \right)\)
\( \Leftrightarrow 4x - 9 < x + 10\) (do \(0 < \frac{1}{2} < 1\))
\( \Leftrightarrow 3x < 19 \Leftrightarrow x < \frac{{19}}{3}\).
Kết hợp điều kiện ta được \(\frac{9}{4} < x < \frac{{19}}{3}\) hay \(2,25 < x < 6,\left( 3 \right)\).
Vì \(x \in \mathbb{Z}\) nên \(x \in \left\{ {3;\,\,4;\,\,5;\,\,6} \right\}\). Vậy có 4 giá trị nguyên của \(x\) thỏa mãn.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có \({\log _{{a^5}}}b = \frac{1}{5}{\log _a}b\).
Lời giải
a)

Ta có \(\left\{ \begin{array}{l}SI \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\SI \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SI \bot \left( {ABCD} \right)\).
Do \(CF \subset \left( {ABC{\rm{D}}} \right) \Rightarrow SI \bot CF\) (1).
b) Gọi \(H = FC \cap DI\).

Xét hai tam giác vuông \(ADI\) và \(DCF\) có
\(\left\{ \begin{array}{l}AI = DF\\AD = DC\\\widehat {DAI} = \widehat {FDC} = 90^\circ \end{array} \right. \Rightarrow \Delta ADI = \Delta DCF\) (c – g – c).
\[ \Rightarrow \left\{ \begin{array}{l}\widehat {{I_1}} = \widehat {{F_1}}\\\widehat {{D_2}} = \widehat {{C_2}}\end{array} \right.,\,\,{\rm{m\`a }}\,\,\widehat {{I_1}} + \widehat {{D_2}} = 90^\circ \Rightarrow \widehat {{F_1}} + \widehat {{D_2}} = 90^\circ \]
\[ \Rightarrow \widehat {FHD} = 90^\circ \Rightarrow CF \bot DI\,\,(2)\].
Từ (1) và (2) suy ra \(CF \bot \left( {SID} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
