(1,0 điểm) Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông, tam giác \(SAB\) là tam giác đều, \(\left( {SAB} \right) \bot \left( {ABCD} \right)\). Gọi \(I,\,\,F\) lần lượt là trung điểm của \(AB\) và \(AD\). Chứng minh rằng:
a) \[SI \bot CF\];
b) \(CF \bot \left( {SID} \right)\).
(1,0 điểm) Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông, tam giác \(SAB\) là tam giác đều, \(\left( {SAB} \right) \bot \left( {ABCD} \right)\). Gọi \(I,\,\,F\) lần lượt là trung điểm của \(AB\) và \(AD\). Chứng minh rằng:
a) \[SI \bot CF\];
b) \(CF \bot \left( {SID} \right)\).
Quảng cáo
Trả lời:
a)

Ta có \(\left\{ \begin{array}{l}SI \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\SI \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SI \bot \left( {ABCD} \right)\).
Do \(CF \subset \left( {ABC{\rm{D}}} \right) \Rightarrow SI \bot CF\) (1).
b) Gọi \(H = FC \cap DI\).

Xét hai tam giác vuông \(ADI\) và \(DCF\) có
\(\left\{ \begin{array}{l}AI = DF\\AD = DC\\\widehat {DAI} = \widehat {FDC} = 90^\circ \end{array} \right. \Rightarrow \Delta ADI = \Delta DCF\) (c – g – c).
\[ \Rightarrow \left\{ \begin{array}{l}\widehat {{I_1}} = \widehat {{F_1}}\\\widehat {{D_2}} = \widehat {{C_2}}\end{array} \right.,\,\,{\rm{m\`a }}\,\,\widehat {{I_1}} + \widehat {{D_2}} = 90^\circ \Rightarrow \widehat {{F_1}} + \widehat {{D_2}} = 90^\circ \]
\[ \Rightarrow \widehat {FHD} = 90^\circ \Rightarrow CF \bot DI\,\,(2)\].
Từ (1) và (2) suy ra \(CF \bot \left( {SID} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \(SA \bot \left( {ABCD} \right)\) nên \(AB\) là hình chiếu của \(SB\) trên \(\left( {ABCD} \right)\) suy ra góc giữa \(SB\) và \(\left( {ABCD} \right)\) là \(\widehat {SBA} = 60^\circ \).
Dựng hình bình hành \(MCBE\). Gọi \(I\) là hình chiếu của \(A\) trên \(BE\) và \(H\) là hình chiếu của \(A\) trên \(SI\).
Ta chứng minh được \(AH \bot \left( {SBE} \right)\).
Khi đó \(d\left( {CM,SB} \right) = d\left( {CM,\left( {SBE} \right)} \right) = d\left( {M,\left( {SBE} \right)} \right) = 2d\left( {A,\left( {SBE} \right)} \right) = 2AH\).
Mặt khác \(AI = \frac{{AE.AB}}{{\sqrt {A{E^2} + A{B^2}} }} = \frac{{a\sqrt 2 }}{2}\) và \(SA = AB \cdot \tan 60^\circ = a\sqrt 3 .\)
Vậy \[d\left( {CM,SB} \right) = 2AH = \]\(\frac{{2AI \cdot SA}}{{\sqrt {A{I^2} + S{A^2}} }} = \frac{{a\sqrt 2 \cdot a\sqrt 3 }}{{\sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {a\sqrt 3 } \right)}^2}} }} = \frac{{2\sqrt {21} a}}{{27}}\).
Câu 2
Lời giải
Đáp án đúng là: A
Ta có \({2^{2x - 1}} = {2^x} \Leftrightarrow 2x - 1 = x \Leftrightarrow x = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.