Trong hình dưới đây, điểm B là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?

Trong hình dưới đây, điểm B là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?

Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có \(A\left( {0;\ln a} \right);B\left( {0;\ln b} \right);C\left( {0;\ln c} \right)\).
Mà B là trung điểm của đoạn thẳng AC nên
\(\ln a + \ln c = 2\ln b\)\( \Leftrightarrow \ln ac = \ln {b^2}\)\( \Leftrightarrow ac = {b^2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có \({2^x} = 4\)\( \Leftrightarrow {2^x} = {2^2} \Leftrightarrow x = 2\).
Vậy tập nghiệm của bất phương trình là \(S = \left\{ 2 \right\}\).
Lời giải
Hướng dẫn giải
a1) \(y' = 5{x^4} + \sin x\).
a2)\(y' = 33{\left( {3x + 4} \right)^{10}}\).
b) Có \(y' = 4{x^3} - 8x\). Có \(y'\left( { - 1} \right) = 4.{\left( { - 1} \right)^3} - 8.\left( { - 1} \right) = 4\).
Điểm thuộc đồ thị đã cho có hoành độ \(x = - 1\) là \(\left( { - 1;2} \right)\).
Do đó phương trình tiếp tuyến của đồ thị hàm số là: \(y = 4\left( {x + 1} \right) + 2 = 4x + 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
