Câu hỏi:

25/12/2025 28 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\)là hình vuông cạnh \(a\), cạnh bên \(SA\)vuông góc với mặt phẳng đáy và \(SA = a\sqrt 2 .\) Tính thể tích \(V\) của khối chóp \(S.ABCD.\)

A. \(V = \frac{{{a^3}\sqrt 2 }}{6}.\)  
B. \(V = \frac{{{a^3}\sqrt 2 }}{4}.\)  
C. \(V = {a^3}\sqrt 2 .\) 
D. \(V = \frac{{{a^3}\sqrt 2 }}{3}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

\({V_{S.ABCD}} = \frac{1}{3}.SA.{S_{ABCD}} = \frac{1}{3}.a\sqrt 2 .{a^2} = \frac{{{a^3}\sqrt 2 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có \[v\left( t \right) = s'\left( t \right) =  - 3{t^2} + 18t + 1 =  - 3\left( {{t^2} - 6t + 9 - 9} \right) + 1 =  - 3{\left( {t - 3} \right)^2} + 28 \le 28\].

Vậy giá trị lớn nhất của vận tốc chất điểm là 28 m/s đạt được khi \(t = 3\left( {\rm{s}} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\({9^x} - {4.3^x} + 3 < 0\)

\( \Leftrightarrow \left( {{3^x} - 1} \right)\left( {{3^x} - 3} \right) < 0\)

\( \Leftrightarrow 1 < {3^x} < 3\)

\( \Leftrightarrow 0 < x < 1\).

Vậy bất phương trình đã cho có tập nghiệm là \(S = \left( {0;1} \right)\) nên không có nghiệm nguyên dương.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = 9.\)  
B. \(x = 8.\) 
C. \(x = 10.\)  
D. \(x = 7.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P = {x^{\frac{4}{5}}}\). 
B. \(P = {x^9}\).  
C. \(P = {x^{20}}\).
D. \(P = {x^{\frac{5}{4}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(S = \left\{ 1 \right\}\).                   
B. \(S = \left\{ { - 1} \right\}\).   
C. \(S = \left\{ 4 \right\}\).  
D. \(S = \left\{ 2 \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP