Cho đường tròn \(\left( C \right)\) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\) và điểm \(A\left( {1;\,\,5} \right)\). Tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(A\) có phương trình là
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \({\left( {1 - 1} \right)^2} + {\left( {5 - 2} \right)^2} = 9\) (luôn đúng). Vậy \(A \in \left( C \right)\).
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1;\,\,2} \right)\).
Tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(A\) có một vectơ pháp tuyến là \(\overrightarrow {IA} = \left( {0;\,\,3} \right)\), do đó nó có phương trình là \(0\left( {x - 1} \right) + 3\left( {y - 5} \right) = 0\) hay \(y - 5 = 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tại \(t = 0\), ta có: \(y = h = 1,2\); tại \(t = 1\), ta có\(h = 8,5\); tại \(t = 2\), ta có \(y = h = 6\).

Chọn hệ trục tọa độ \(Oth\) như hình vẽ.
Parabol \(\left( P \right)\) có phương trình: \(y = a{t^2} + bt + c\), với \(a \ne 0\).
Theo bài ra ta có: \(A\left( {0;\,\,1,2} \right) \in \left( P \right),\,\,B\left( {1;\,\,8,5} \right) \in \left( P \right),\,\,C\left( {2;\,\,6} \right) \in \left( P \right)\).
Vậy ta có hệ phương trình: \(\left\{ \begin{array}{l}c = 1,2\\a + b + c = 8,5\\4a + 2b + c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1,2\\a = - 4,9\\b = 12,2\end{array} \right.\).
Vậy hàm số cần tìm có dạng: \(y = - 4,9{t^2} + 12,2t + 1,2\).
Câu 2
Trong mặt phẳng tọa độ \(Oxy\), khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(\Delta :4x - 3y + 1 = 0\) bằng
Lời giải
Đáp án đúng là: B
Ta có: \(d\left( {O,\,\,\Delta } \right) = \frac{{\left| {4.0 - 3.0 + 1} \right|}}{{\sqrt {{4^2} + {3^2}} }} = \frac{1}{5}\).
Câu 4
A. \(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\);
B. \(f\left( x \right) \le 0\) với mọi \(x \in \mathbb{R}\);
C. \(f\left( x \right) \ge 0\) với mọi \(x \in \mathbb{R}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(D = \left( { - \infty ;\,\,\frac{3}{2}} \right]\);
B. \(D = \left( {1;\,\,\frac{3}{2}} \right]\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

