Câu hỏi:

16/01/2026 99 Lưu

Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ \(Oth\), trong đó \(t\) là thời gian, kể từ khi quả bóng được đá lên, \(h\) là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2 m. Sau đó 1 giây, nó đạt độ cao 8,5 m và 2 giây sau khi đá lên, nó ở độ cao 6 m. Hãy tìm hàm số bậc hai biểu thị độ cao \(h\) theo thời gian \(t\) và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tại \(t = 0\), ta có: \(y = h = 1,2\); tại \(t = 1\), ta có\(h = 8,5\); tại \(t = 2\), ta có \(y = h = 6\).

Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất (ảnh 1)

Chọn hệ trục tọa độ \(Oth\) như hình vẽ.

Parabol \(\left( P \right)\) có phương trình: \(y = a{t^2} + bt + c\), với \(a \ne 0\).

Theo bài ra ta có: \(A\left( {0;\,\,1,2} \right) \in \left( P \right),\,\,B\left( {1;\,\,8,5} \right) \in \left( P \right),\,\,C\left( {2;\,\,6} \right) \in \left( P \right)\).

Vậy ta có hệ phương trình: \(\left\{ \begin{array}{l}c = 1,2\\a + b + c = 8,5\\4a + 2b + c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1,2\\a =  - 4,9\\b = 12,2\end{array} \right.\).

Vậy hàm số cần tìm có dạng: \(y =  - 4,9{t^2} + 12,2t + 1,2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau:

Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau: (ảnh 1)

Phương trình của parabol này là

A. \(y = {x^2} - 2x - 1\);                                   
B. \(y = {x^2} + 2x - 2\);      
C. \(y = 2{x^2} - 4x - 2\);                      
D.\(y = {x^2} + 2x - 1\).

Lời giải

Đáp án đúng là: A

Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau: (ảnh 2)

Quan sát hình vẽ ta thấy parabol cắt trục tung tại điểm có hoành độ bằng – 1 nên loại đáp án B và C.

Hoành độ của đỉnh là \({x_I} =  - \frac{b}{{2a}} = 1\) nên ta loại đáp án D và chọn đáp án A.

Câu 2

A. \(\left( {5;\,\, - 3} \right)\);                           
B. \(\left( { - 5;\,3} \right)\); 
C. \(\left( {\frac{1}{2};\,\,3} \right)\);                              
D. \(\left( {6;\,\,1} \right)\).

Lời giải

Đáp án đúng là: D

Đường thẳng\(\Delta :\left\{ \begin{array}{l}x = 5 - \frac{1}{2}t\\y =  - 3 + 3t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow u  = \left( { - \frac{1}{2};\,\,3} \right)\), nên có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {3;\,\,\frac{1}{2}} \right)\).

Do đó, nó cũng có một vectơ pháp tuyến là \(\overrightarrow {n'}  = 2\overrightarrow n  = 2\left( {3;\,\,\frac{1}{2}} \right) = \left( {6;\,\,1} \right)\).

Câu 3

A. \(D = \left( { - \infty ;\,\,\frac{3}{2}} \right]\);           

B. \(D = \left( {1;\,\,\frac{3}{2}} \right]\);                    

C. \(D = \left( { - \infty ;\,\,\frac{3}{2}} \right]\backslash \left\{ 1 \right\}\);                   
D. \(D = \left( {\frac{3}{2}; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong mặt phẳng tọa độ \(Oxy\), khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(\Delta :4x - 3y + 1 = 0\) bằng

A. 1;                          
B. \(\frac{1}{5}\);          
C. 3;                           
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.Nếu hàm số \(y = a{x^2} + bx + c\) có \(a > 0,\,\,b < 0,\,\,c > 0\) thì đồ thị của nó có dạng (ảnh 1);                                        

B.Nếu hàm số \(y = a{x^2} + bx + c\) có \(a > 0,\,\,b < 0,\,\,c > 0\) thì đồ thị của nó có dạng (ảnh 2);     

C. Nếu hàm số \(y = a{x^2} + bx + c\) có \(a > 0,\,\,b < 0,\,\,c > 0\) thì đồ thị của nó có dạng (ảnh 3);                                             

D. Nếu hàm số \(y = a{x^2} + bx + c\) có \(a > 0,\,\,b < 0,\,\,c > 0\) thì đồ thị của nó có dạng (ảnh 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\); 

B. \(f\left( x \right) \le 0\) với mọi \(x \in \mathbb{R}\);     

C. \(f\left( x \right) \ge 0\) với mọi \(x \in \mathbb{R}\); 

D. \(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP