Cho điểm \[M\left( {2;5} \right)\] và đường thẳng \[\Delta :x + 2y - 2 = 0\].
a) Tìm tọa độ điểm \[M'\] đối xứng với \[M\] qua \[\Delta \];
b) Viết phương trình đường thẳng \[\Delta '\] đối xứng với \[\Delta \] qua \[M\].
Cho điểm \[M\left( {2;5} \right)\] và đường thẳng \[\Delta :x + 2y - 2 = 0\].
a) Tìm tọa độ điểm \[M'\] đối xứng với \[M\] qua \[\Delta \];
b) Viết phương trình đường thẳng \[\Delta '\] đối xứng với \[\Delta \] qua \[M\].
Quảng cáo
Trả lời:
a) Ta có: \(2 + 2.5 - 2 = 10 \ne 0 \Rightarrow M \notin \Delta \).
Đường thẳng \[d\] qua \[M\] và vuông góc \[\Delta \] có dạng: \[2x - y + m = 0\].
Do \[M\left( {2;5} \right) \in d \Rightarrow 4 - 5 + m = 0 \Rightarrow m = 1\].
Phương trình \[d:2x - y - 1 = 0\].
Gọi giao điểm của hai đường thẳng \(\Delta \)và \(d\) là \(H\). Tọa độ của \(H\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}2x - y - 1 = 0\\x + 2y - 2 = 0\end{array} \right. \Rightarrow H\left( {\frac{4}{5};\frac{3}{5}} \right)\].
Vì \[M\] và \[M'\] đối xứng qua \[H\] nên \[H\] là trung điểm của \[MM'\].
\[\left. \begin{array}{l}{x_{M'}} = 2{x_H} - {x_M} = \frac{8}{5} - 2 = - \frac{2}{5}\\{y_{M'}} = 2{y_H} - {y_M} = \frac{6}{5} - 5 = - \frac{{19}}{5}\end{array} \right\} \Rightarrow M'\left( { - \frac{2}{5}; - \frac{{19}}{5}} \right)\].
b) Cho \[x = 0 \Rightarrow 0 + 2y - 2 = 0 \Rightarrow y = 1 \Rightarrow I\left( {0;1} \right) \in \Delta \];
Cho \[x = 1 \Rightarrow 1 + 2y - 2 = 0 \Rightarrow y = \frac{1}{2} \Rightarrow J\left( {1;\frac{1}{2}} \right) \in \Delta \].
Gọi \[I'\] là điểm đối xứng của \[I\] qua \[M,\,\,J'\] là điểm đối xứng của \[J\] qua \[M\]
Ta có: \[\left\{ \begin{array}{l}{x_{I'}} = 2{x_M} - {x_I} = 4 - 0 = 4\\{y_{I'}} = 2{y_M} - {y_I} = 10 - 1 = 9\end{array} \right. \Rightarrow I'\left( {4;9} \right)\];
\[\left\{ \begin{array}{l}{x_{J'}} = 2{x_M} - {x_J} = 4 - 1 = 3\\{y_{J'}} = 2{y_M} - {y_J} = 10 - \frac{1}{2} = \frac{{19}}{2}\end{array} \right. \Rightarrow J'\left( {3;\frac{{19}}{2}} \right)\].
Phương trình \[\Delta ' \equiv \] phương trình \[I'J':\frac{{x - 4}}{{ - 1}} = \frac{{y - 9}}{{\frac{1}{2}}} \Rightarrow x + 2y - 22 = 0\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tại \(t = 0\), ta có: \(y = h = 1,2\); tại \(t = 1\), ta có\(h = 8,5\); tại \(t = 2\), ta có \(y = h = 6\).

Chọn hệ trục tọa độ \(Oth\) như hình vẽ.
Parabol \(\left( P \right)\) có phương trình: \(y = a{t^2} + bt + c\), với \(a \ne 0\).
Theo bài ra ta có: \(A\left( {0;\,\,1,2} \right) \in \left( P \right),\,\,B\left( {1;\,\,8,5} \right) \in \left( P \right),\,\,C\left( {2;\,\,6} \right) \in \left( P \right)\).
Vậy ta có hệ phương trình: \(\left\{ \begin{array}{l}c = 1,2\\a + b + c = 8,5\\4a + 2b + c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1,2\\a = - 4,9\\b = 12,2\end{array} \right.\).
Vậy hàm số cần tìm có dạng: \(y = - 4,9{t^2} + 12,2t + 1,2\).
Câu 3
A. \(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\);
B. \(f\left( x \right) \le 0\) với mọi \(x \in \mathbb{R}\);
C. \(f\left( x \right) \ge 0\) với mọi \(x \in \mathbb{R}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Trong mặt phẳng tọa độ \(Oxy\), khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(\Delta :4x - 3y + 1 = 0\) bằng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(D = \left( { - \infty ;\,\,\frac{3}{2}} \right]\);
B. \(D = \left( {1;\,\,\frac{3}{2}} \right]\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


