Tập nghiệm của bất phương trình \({x^2} - x - 6 \le 0\) là
Tập nghiệm của bất phương trình \({x^2} - x - 6 \le 0\) là
A. \[S = \left( { - \infty ;\,\, - 3} \right) \cup \left( {2;\,\, + \infty } \right)\];
B. \(S = \left[ { - 2;\,\,3} \right]\);
Quảng cáo
Trả lời:
Đáp án đúng là: B
Xét tam thức bậc hai \(f\left( x \right) = {x^2} - x - 6\) có hai nghiệm là \({x_1} = - 2\), \({x_2} = 3\).
Mặt khác có hệ số \(a = 1 > 0\), do đó ta có bảng xét dấu sau:
|
\(x\) |
\( - \infty \) – 2 3 \( + \infty \) |
|
\(f\left( x \right)\) |
+ 0 – 0 + |
Dựa vào bảng xét dấu, ta thấy \(f\left( x \right) = {x^2} - x - 6 \le 0\)\( \Leftrightarrow x \in \left[ { - 2;\,\,3} \right]\).
Vậy tập nghiệm của bất phương trình đã cho là \(S = \left[ { - 2;\,\,3} \right]\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi cạnh hình vuông được uốn thành là \(x\) (cm) \(\left( {0 < x < 15} \right)\).
Chiều dài đoạn dây uốn thành hình vuông hay chính là chu vi của hình vuông là \(4x\) (cm).
Chiều dài đoạn dây uốn thành vòng tròn hay chính là chu vi vòng tròn là \(60 - 4x\) (cm). Khi đó bán kính của hình tròn là \(r = \frac{{60 - 4x}}{{2\pi }} = \frac{{30 - 2x}}{\pi }\) (cm).
Diện tích hình vuông được uốn thành là \({S_1} = {x^2}\) (cm2).
Diện tích hình tròn được uốn thành là
\({S_2} = \pi {r^2} = \pi .{\left( {\frac{{30 - 2x}}{\pi }} \right)^2} = \frac{{{{\left( {30 - 2x} \right)}^2}}}{\pi } = \frac{1}{\pi }\left( {4{x^2} - 120x + 900} \right)\) (cm2).
Tổng diện tích của hình vuông và hình tròn được uốn thành là:
\(S = {S_1} + {S_2} = {x^2} + \frac{1}{\pi }\left( {4{x^2} - 120x + 900} \right) = \left( {1 + \frac{4}{\pi }} \right){x^2} - \frac{{120}}{\pi }x + \frac{{900}}{\pi }\) (cm2).
Nhận thấy \(S\) là hàm số bậc hai của \(x\), do đó \(S\) nhỏ nhất tại đỉnh của đồ thị hàm số \(S = \left( {1 + \frac{4}{\pi }} \right){x^2} - \frac{{120}}{\pi }x + \frac{{900}}{\pi }\).
Khi đó, tổng diện tích của hình vuông và hình tròn được uốn nhỏ nhất khi\(x = - \frac{b}{{2a}} = - \frac{{\frac{{ - 120}}{\pi }}}{{2\left( {1 + \frac{4}{\pi }} \right)}} = \frac{{60}}{{4 + \pi }}\) (cm).
Vậy chiều dài đoạn dây uốn thành hình vuông lúc này bằng \(4x = 4.\frac{{40}}{{4 + \pi }} \approx 33,61\) (cm).
Câu 2
A. \(5x - 3y - 5 = 0\);
B. \(3x + 5y - 37 = 0\);
Lời giải
Đáp án đúng là: A
Do \(BH \bot AC\) nên đường cao \(BH\) có một vectơ pháp tuyến là \(\overrightarrow n = \overrightarrow {CA} = \left( {5;\,\, - 3} \right)\).
Phương trình tổng quát của đường cao \(BH\): \(5\left( {x - 4} \right) - 3\left( {y - 5} \right) = 0\) hay \(5x - 3y - 5 = 0\).
Câu 3
A. \(\left( C \right)\) có tâm \(I\left( { - 1;\,\,3} \right)\);
B. \(\left( C \right)\) có bán kính \(R = 5\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.