Câu hỏi:

25/12/2025 12 Lưu

Tìm \(m\) để mọi \[x \in \left[ { - 1;\,\,1} \right]\] đều là nghiệm của bất phương trình

\(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 \le 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 \le 0\) (1).

Ta có: \(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 = 0 \Leftrightarrow x = m + 2\) hoặc \(x = \frac{{4 - m}}{3}\).

* Với \(m + 2 > \frac{{4 - m}}{3} \Leftrightarrow 3m + 6 > 4 - m \Leftrightarrow m >  - \frac{1}{2}\) ta có:

Bất phương trình (1) \( \Leftrightarrow \frac{{4 - m}}{3} \le x \le m + 2\).

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {\frac{{4 - m}}{3};m + 2} \right]\).

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {\frac{{4 - m}}{3};m + 2} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge \frac{{4 - m}}{3}}\\{1 \le m + 2}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge 7}\\{m \ge  - 1}\end{array}} \right. \Leftrightarrow m \ge 7\).

Kết hợp với điều kiện \(m >  - \frac{1}{2}\) ta có \(m \ge 7\) thỏa mãn yêu cầu bài toán.

* Với \(m + 2 < \frac{{4 - m}}{3} \Leftrightarrow m <  - \frac{1}{2}\) ta có:

Bất phương trình (1) \( \Leftrightarrow m + 2 \le x \le \frac{{4 - m}}{3}\).

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {m + 2;\frac{{4 - m}}{3}} \right]\).

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {m + 2;\frac{{4 - m}}{3}} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge m + 2}\\{1 \le \frac{{4 - m}}{3}}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le  - 3}\\{m \le 1}\end{array}} \right. \Leftrightarrow m \le  - 3\).

Kết hợp với điều kiện \(m <  - \frac{1}{2}\) ta có \(m \le  - 3\) thỏa mãn yêu cầu bài toán.

* Với \(m =  - \frac{1}{2}\) ta có bất phương trình (1) \( \Leftrightarrow x = \frac{3}{2} > 1\) nên \(m =  - \frac{1}{2}\) không thỏa mãn yêu cầu bài toán.

Vậy \(m \in ( - \infty ; - 3] \cup {\rm{[}}7; + \infty )\) là giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chiếc thuyền đang neo đậu tại vị trí A cách bờ biển một khoảng cách AB = 300 m. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng là 1 400 m (ảnh 2)

Đổi: 300 m = 0,3 km; 1 400 m = 1,4 km; 20 phút = \(\frac{1}{3}\) giờ.

Đặt \(BM = x\) (km, \(x > 0\)).

Áp dụng định lí Pythagore trong tam giác vuông \(ABM\), ta suy ra \(AM = \sqrt {{{0,3}^2} + {x^2}} \) (km).

Thời gian người đó chèo thuyền từ \(A\) đến \(M\) là \(\frac{{\sqrt {{{0,3}^2} + {x^2}} }}{3}\) (giờ).

Ta có: \(BM + MC = BC \Rightarrow MC = BC - BM = 1,4 - x\) (km).

Thời gian người đó đi bộ từ \(M\) đến \(C\) là \(\frac{{1,4 - x}}{6}\) (giờ).

Khi đó ta có: \(\frac{{\sqrt {{{0,3}^2} + {x^2}} }}{3} + \frac{{1,4 - x}}{6} = \frac{1}{3}\)\( \Leftrightarrow 2\sqrt {0,09 + {x^2}}  = x + 0,6\).

Giải phương trình trên ta suy ra được \(x = 0,4\) là giá trị thỏa mãn \(x > 0\).

Vậy \(BM = 0,4\) km = 400 m.

Câu 2

A. 5;                          
B. 6;                              
C. 7;                           
D. 8.

Lời giải

Đáp án đúng là: B

Xét tam thức \(f\left( x \right) = 2{x^2} - 3x - 15\) có hai nghiệm là \({x_1} = \frac{{3 - \sqrt {129} }}{4}\), \({x_2} = \frac{{3 + \sqrt {129} }}{4}\).

Mặt khác có hệ số \(a = 2 > 0\), do đó ta có bảng xét dấu sau:

\(x\)

\( - \infty \)                \(\frac{{3 - \sqrt {129} }}{4}\)              \(\frac{{3 + \sqrt {129} }}{4}\)                 \( + \infty \)

\(f\left( x \right)\)

           +             0            –           0           +

 Dựa vào bảng xét dấu, ta thấy \(f\left( x \right) = 2{x^2} - 3x - 15 \le 0\)\( \Leftrightarrow x \in \left[ {\frac{{3 - \sqrt {129} }}{4};\,\,\frac{{3 + \sqrt {129} }}{4}} \right]\).

Do đó, bất phương trình đã cho có 6 nghiệm nguyên là – 2; – 1; 0; 1; 2; 3.

Câu 3

A. Phương trình vô nghiệm;                            

B. Phương trình có một nghiệm;   

C. Tổng các nghiệm của phương trình là – 1;     
D. Phương trình có hai nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau:

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau: (ảnh 1)

Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng

A. \(\left( {0;\,\,1} \right)\);                              
B. \(\left( {1;\,\,3} \right)\);  
C. \(\left( {3;\,\,5} \right)\);                     
D. \(\left( {0;\,\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {1;\, + \infty } \right)\);                     
B. \(\left[ {1;\,\, + \infty } \right)\); 
C. \(\left[ {1;\,\,3} \right) \cup \left( {3;\,\, + \infty } \right)\);                            
D. \(\left( {1;\, + \infty } \right)\backslash \left\{ 3 \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {10;\,2\,5} \right)\);                          
B. \(\left( { - 1;\,\,7} \right)\);         
C. \(\left( {2;\,\,5} \right)\);        
D. \(\left( {5;\,\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP