Câu hỏi:

25/12/2025 137 Lưu

Cho \({\log _2}x = \sqrt 2 \). Giá trị của biểu thức \(A = {\log _2}{x^2} + {\log _{\frac{1}{2}}}{x^3} + {\log _4}x\) bằng       

A. \(\frac{{\sqrt 2 }}{2}\).                       
B. \( - \frac{{\sqrt 2 }}{2}\).      
C. \(\sqrt 2 \).          
D. \( - \sqrt 2 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

\({\log _2}x = \sqrt 2 \) nên \(x > 0\).

Khi đó ta có \(A = {\log _2}{x^2} + {\log _{\frac{1}{2}}}{x^3} + {\log _4}x\)\( = 2{\log _2}x + 3{\log _{{2^{ - 1}}}}x + {\log _{{2^2}}}x\)

                        \( = 2{\log _2}x - 3{\log _2}x + \frac{1}{2}{\log _2}x = - \frac{1}{2}{\log _2}x = - \frac{{\sqrt 2 }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

  A. 8.                         
B. \(4\).                    
C. \(2\). 
D. 16.

Lời giải

Đáp án đúng là: D

Ta có \({a^{{{\log }_{\sqrt a }}4}} = {a^{{{\log }_{{a^{\frac{1}{2}}}}}4}} = {a^{2{{\log }_a}{2^2}}} = {a^{4{{\log }_a}2}} = {\left( {{a^{{{\log }_a}2}}} \right)^4} = {2^4} = 16\).

Câu 2

A. \(P = {a^{\sqrt 3 }}\).                         
B. \(P = \frac{1}{a}\).                   
C. \(P = a\).             
D. \(P = \frac{1}{{{a^{\sqrt 3 }}}}\).

Lời giải

Đáp án đúng là: B

Ta có \(P = \frac{{{a^{2 + \sqrt 3 }} \cdot {{\left( {{a^{1 - \sqrt 3 }}} \right)}^{1 + \sqrt 3 }}}}{{{a^{1 + \sqrt 3 }}}} = \frac{{{a^{2 + \sqrt 3 }} \cdot {a^{\left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)}}}}{{{a^{1 + \sqrt 3 }}}} = \frac{{{a^{2 + \sqrt 3 }} \cdot {a^{ - 2}}}}{{{a^{1 + \sqrt 3 }}}} = \frac{{{a^{\sqrt 3 }}}}{{{a^{1 + \sqrt 3 }}}} = \frac{1}{a}\).

Câu 3

A. \({a^5}{b^4}\).   
B. \({a^4}{b^5}\).   
C. \(5a + 4b\).                                 
D. \(4a + 5b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP