Câu hỏi:

25/12/2025 7 Lưu

(1,0 điểm) Để nghiên cứu mối liên quan giữa thói quen hút thuốc lá với bệnh viêm phổi, nhà nghiên cứu chọn một nhóm gồm 5 000 người đàn ông. Với mỗi người trong nhóm, người nghiên cứu điều tra xem họ có hút thuốc lá và có bị viêm phổi hay không. Kết quả được thống kê trong bảng sau:

 

Viêm phổi

Không viêm phổi

Nghiện thuốc lá

752 người

1236 người

Không nghiện thuốc lá

575 người

2437 người

Từ bảng thống kê trên, hãy chứng tỏ rằng việc nghiện thuốc lá và mắc bệnh viêm phổi có liên quan với nhau?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Người đó nghiện thuốc lá”;

       \(B\) là biến cố “Người đó mắc bệnh viêm phổi”;

Khi đó \(AB\) là biến cố “Người đó nghiện thuốc lá và mắc bệnh viêm phổi”.

Xác suất để người đó nghiện thuốc lá là \[P\left( A \right) = \frac{{752 + 1236}}{{5000}} = \frac{{1988}}{{5000}}\].

Xác suất để người đó mắc bệnh phổi là \[P\left( B \right) = \frac{{752 + 575}}{{5000}} = \frac{{1327}}{{5000}}\].

Xác suất để người đó nghiện thuốc lá và mắc bệnh phổi là \[P\left( {AB} \right) = \frac{{752}}{{5000}}\].

Nhận thấy: \[P\left( A \right) \cdot P\left( B \right) = \frac{{1988}}{{5000}} \cdot \frac{{1327}}{{5000}} \ne \frac{{752}}{{5000}} = P\left( {AB} \right)\].

Do đó, hai biến cố \(A\) \(B\) không độc lập.

Vậy ta kết luận rằng việc nghiện thuốc lá và mắc bệnh viêm phổi có liên quan với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(3\sqrt 2 - 4 = \sqrt 2 \left( {3 - 2\sqrt 2 } \right) \Rightarrow M = {\left( {3 + 2\sqrt 2 } \right)^{2019}} \cdot {\left( {\sqrt 2 } \right)^{2018}} \cdot {\left( {3 - 2\sqrt 2 } \right)^{2018}}\).

Lại có \(\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right) = {3^2} - {\left( {2\sqrt 2 } \right)^2} = 9 - 8 = 1\).

Khi đó, \({\left( {3 + 2\sqrt 2 } \right)^{2018}}.{\left( {3 - 2\sqrt 2 } \right)^{2018}} = {\left[ {\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)} \right]^{2018}} = 1\).

Do vậy \(M = \left( {3 + 2\sqrt 2 } \right) \cdot {2^{1009}}\).

b) Điều kiện xác định của hàm số: \({x^2} - 2mx + 4 > 0\).

Hàm số có tập xác định là \(\mathbb{R}\) Û \({x^2} - 2mx + 4 > 0,\forall x \in \mathbb{R} \Leftrightarrow {m^2} - 4 < 0 \Leftrightarrow - 2 < m < 2.\)

Câu 2

A. \({\log _a}\left( {xy} \right) = {\log _a}x + {\log _a}y\).        
B. \({\log _a}\frac{x}{y} = {\log _a}x - {\log _a}y\).                                      
C. \({\log _a}\frac{1}{x} = \frac{1}{{{{\log }_a}x}}\).                                                         
D. \({\log _a}b \cdot {\log _b}x = {\log _a}x\).

Lời giải

Đáp án đúng là: C

Ta có \({\log _a}\frac{1}{x} = {\log _a}1 - {\log _a}x = 0 - {\log _a}x = - {\log _a}x \ne \frac{1}{{{{\log }_a}x}}\). Vậy đáp án C sai.

Câu 4

A. \({4^{2m}}\).      
B. \({2^m} \cdot \left( {{2^{3m}}} \right)\).                          
C. \({4^m} \cdot \left( {{2^m}} \right)\).                          
D. \({2^{4m}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(P = {a^{\sqrt 3 }}\).                         
B. \(P = \frac{1}{a}\).                   
C. \(P = a\).             
D. \(P = \frac{1}{{{a^{\sqrt 3 }}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP