(1,0 điểm) Để nghiên cứu mối liên quan giữa thói quen hút thuốc lá với bệnh viêm phổi, nhà nghiên cứu chọn một nhóm gồm 5 000 người đàn ông. Với mỗi người trong nhóm, người nghiên cứu điều tra xem họ có hút thuốc lá và có bị viêm phổi hay không. Kết quả được thống kê trong bảng sau:
Viêm phổi
Không viêm phổi
Nghiện thuốc lá
752 người
1236 người
Không nghiện thuốc lá
575 người
2437 người
Từ bảng thống kê trên, hãy chứng tỏ rằng việc nghiện thuốc lá và mắc bệnh viêm phổi có liên quan với nhau?
(1,0 điểm) Để nghiên cứu mối liên quan giữa thói quen hút thuốc lá với bệnh viêm phổi, nhà nghiên cứu chọn một nhóm gồm 5 000 người đàn ông. Với mỗi người trong nhóm, người nghiên cứu điều tra xem họ có hút thuốc lá và có bị viêm phổi hay không. Kết quả được thống kê trong bảng sau:
|
|
Viêm phổi |
Không viêm phổi |
|
Nghiện thuốc lá |
752 người |
1236 người |
|
Không nghiện thuốc lá |
575 người |
2437 người |
Từ bảng thống kê trên, hãy chứng tỏ rằng việc nghiện thuốc lá và mắc bệnh viêm phổi có liên quan với nhau?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Người đó nghiện thuốc lá”;
\(B\) là biến cố “Người đó mắc bệnh viêm phổi”;
Khi đó \(AB\) là biến cố “Người đó nghiện thuốc lá và mắc bệnh viêm phổi”.
Xác suất để người đó nghiện thuốc lá là \[P\left( A \right) = \frac{{752 + 1236}}{{5000}} = \frac{{1988}}{{5000}}\].
Xác suất để người đó mắc bệnh phổi là \[P\left( B \right) = \frac{{752 + 575}}{{5000}} = \frac{{1327}}{{5000}}\].
Xác suất để người đó nghiện thuốc lá và mắc bệnh phổi là \[P\left( {AB} \right) = \frac{{752}}{{5000}}\].
Nhận thấy: \[P\left( A \right) \cdot P\left( B \right) = \frac{{1988}}{{5000}} \cdot \frac{{1327}}{{5000}} \ne \frac{{752}}{{5000}} = P\left( {AB} \right)\].
Do đó, hai biến cố \(A\) và \(B\) không độc lập.
Vậy ta kết luận rằng việc nghiện thuốc lá và mắc bệnh viêm phổi có liên quan với nhau.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \(3\sqrt 2 - 4 = \sqrt 2 \left( {3 - 2\sqrt 2 } \right) \Rightarrow M = {\left( {3 + 2\sqrt 2 } \right)^{2019}} \cdot {\left( {\sqrt 2 } \right)^{2018}} \cdot {\left( {3 - 2\sqrt 2 } \right)^{2018}}\).
Lại có \(\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right) = {3^2} - {\left( {2\sqrt 2 } \right)^2} = 9 - 8 = 1\).
Khi đó, \({\left( {3 + 2\sqrt 2 } \right)^{2018}}.{\left( {3 - 2\sqrt 2 } \right)^{2018}} = {\left[ {\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)} \right]^{2018}} = 1\).
Do vậy \(M = \left( {3 + 2\sqrt 2 } \right) \cdot {2^{1009}}\).
b) Điều kiện xác định của hàm số: \({x^2} - 2mx + 4 > 0\).
Hàm số có tập xác định là \(\mathbb{R}\) Û \({x^2} - 2mx + 4 > 0,\forall x \in \mathbb{R} \Leftrightarrow {m^2} - 4 < 0 \Leftrightarrow - 2 < m < 2.\)
Câu 2
Lời giải
Đáp án đúng là: C
Ta có \({\log _a}\frac{1}{x} = {\log _a}1 - {\log _a}x = 0 - {\log _a}x = - {\log _a}x \ne \frac{1}{{{{\log }_a}x}}\). Vậy đáp án C sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.