Câu hỏi:

25/12/2025 12 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\) và hai đường thẳng \({\Delta _1}:x - y = 0,{\Delta _2}:x - 7y = 0\). Xác định tọa độ tâm \(K\) đường tròn \(\left( {C'} \right)\) tiếp xúc với các đường thẳng \({\Delta _1},\,{\Delta _2}\) và tâm \(K\) thuộc đường tròn \(\left( C \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\) và hai đường thẳng \({\Delta _1}:x - y = 0,{\Delta _2}:x - 7y = 0\) (ảnh 1)

Xét hệ phương trình \(\left\{ \begin{array}{l}x - y = 0\\x - 7y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 0\end{array} \right.\).

Do đó, \({\Delta _1} \cap {\Delta _2} = O\left( {0;0} \right)\). Gọi \(A,\,\,B\) lần lượt là hai tiếp điểm của \(\left( {C'} \right)\) với \({\Delta _1},{\Delta _2}.\)

Ta có tam giác \(OAB\) cân tại \(O\) và \(K\) thuộc đường phân giác của \(\widehat {AOB}\).

Mặt khác, ta chứng minh được phương trình đường phân giác của \(\widehat {AOB}\) là:

\(\frac{{x - y}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} =  \pm \frac{{x - 7y}}{{\sqrt {{1^2} + {{\left( { - 7} \right)}^2}} }} \Leftrightarrow \left[ \begin{array}{l}2x + y = 0\\x - 2y = 0\end{array} \right.\) .

Vì \(K \in \left( C \right)\) nên tọa độ điểm \(K\) là nghiệm của các hệ phương trình

\(\left\{ \begin{array}{l}2x + y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\,\)  (Vô nghiệm)  và  \(\left\{ \begin{array}{l}x - 2y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\, \Leftrightarrow \left\{ \begin{array}{l}x = \frac{8}{5}\\y = \frac{4}{5}\end{array} \right.\).  

Vậy \(K\left( {\frac{8}{5};\,\frac{4}{5}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\)(nghìn đồng) là số tiền tăng thêm khi bán ra một cốc trà sữa \(\left( {x \ge 0} \right)\).

Số cốc trà sữa bán được sau khi tăng giá thêm \(x\)(nghìn đồng) là: \(2\,200 - 100x\) (cốc).

Số tiền lãi thu được là:

\(\left( {30 + x - 22} \right)\left( {2\,\,200 - 100x} \right) = \left( {8 + x} \right)\left( {2\,200 - 100x} \right) =  - 100{x^2} + 1\,400x + 17600\) (nghìn đồng).

Để lợi nhuận thu được là lớn nhất thì phải tìm được \(x\) sao cho hàm số \(f\left( x \right) =  - 100{x^2} + 1400x + 17600\) lớn nhất.

Hàm số này là hàm số bậc hai có \(a =  - 100 < 0\) nên nó đạt giá trị lớn nhất tại đỉnh của đồ thị hàm số.

Hoành độ đỉnh của đồ thị hàm số \(f\left( x \right) =  - 100{x^2} + 1400x + 17600\) là \(x =  - \frac{b}{{2a}} =  - \frac{{1400}}{{2.\left( { - 100} \right)}} = 7\) (thỏa mãn \[x \ge 0\]).

Khi đó số tiền phải tăng lên để lợi nhuận lớn nhất là 7 nghìn đồng hay chính là bán ra một cốc trà sữa với giá 30 + 7 = 37 (nghìn đồng).

Vậy cửa hàng phải bán mỗi cốc trà sữa với giá 37 000 đồng để đạt lợi nhuận lớn nhất.

Câu 2

A. \(\mathbb{R}\backslash \left\{ { - 1;\,\,6} \right\}\);                              

B. \(\left( { - \infty ;\,\,5} \right)\); 

C. \(\left( { - \infty ;\,\,5} \right]\backslash \left\{ { - 1} \right\}\);                
D. \(\left( {\infty ;\,\,5} \right)\backslash \left\{ { - 1;\,\,6} \right\}\).

Lời giải

Đáp án đúng là: C

Điều kiện xác định của hàm số \(y = \frac{{\sqrt {5 - x} }}{{{x^2} - 5x - 6}}\) là \(\left\{ \begin{array}{l}5 - x \ge 0\\{x^2} - 5x - 6 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 5\\x \ne 6\\x \ne  - 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \le 5\\x \ne  - 1\end{array} \right.\).

Vậy tập xác định của hàm số là \(D = \left( { - \infty ;\,5} \right]\backslash \left\{ { - 1} \right\}\).

Câu 3

A. \(\frac{1}{{\sqrt {10} }}\);                           
B. \(\frac{2}{{\sqrt {10} }}\);         
C. \(\frac{3}{{\sqrt {10} }}\);                                
D. \(\frac{4}{{\sqrt {10} }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau:

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau:  Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng (ảnh 1)

Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng

A. \(\left( {2;\,\,3} \right)\);                              
B. \(\left( {1;\,\,3} \right)\);  
C. \(\left( {0;\,\,2} \right)\);                     
D. \(\left( { - 1;\,\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} + 3\). Giá trị của hàm số tại \(x = 1\) là

A. 3;                          
B. 1;                              
C. 0;                           
D. – 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x =  - 3\);             
B. \(x = \frac{3}{2}\);    
C. \(x =  - \frac{3}{2}\);                 
D. \(x = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP