(1,0 điểm) Ba xạ thủ bắn vào bia, mỗi người bắn một lần với xác suất trúng đích tương ứng là \(x,y\) và \(0,6\). Biết xác suất để ít nhất một trong ba xạ thủ bắn trúng là \(0,976\) và xác suất để ba xạ thủ trên đều bắn trúng là \(0,336\). Tính xác suất để có đúng hai xạ thủ bắn trúng.
(1,0 điểm) Ba xạ thủ bắn vào bia, mỗi người bắn một lần với xác suất trúng đích tương ứng là \(x,y\) và \(0,6\). Biết xác suất để ít nhất một trong ba xạ thủ bắn trúng là \(0,976\) và xác suất để ba xạ thủ trên đều bắn trúng là \(0,336\). Tính xác suất để có đúng hai xạ thủ bắn trúng.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Gọi \({A_i}\) là biến cố “Người thứ i bắn trúng” với \(i = 1,2,3\).
Ta có các \({A_i}\) độc lập với nhau và \(P\left( {{A_1}} \right) = x;P\left( {{A_2}} \right) = y;P\left( {{A_3}} \right) = 0,6\).
Gọi \(A\) là biến cố “Ít nhất một trong ba xạ thủ bắn trúng”, \(B\) là biến cố “Ba xạ thủ đều bắn trúng”, \(C\) là biến cố “Có đúng hai xạ thủ đều bắn trúng”.
Theo đề bài, ta có \(P\left( A \right) = 0,976;\,\,P\left( B \right) = 0,336\).
Ta có \(\overline A \) là biến cố “Không có xạ thủ bắn trúng”.
Suy ra \(\overline A = \overline {{A_1}} \overline {{A_2}} \overline {{A_3}} \Rightarrow P\left( {\overline A } \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} } \right) \cdot P\left( {\overline {{A_3}} } \right) = \left( {1 - x} \right) \cdot \left( {1 - y} \right) \cdot 0,4\).
Lại có \(P\left( {\overline A } \right) = 1 - P\left( A \right) \Leftrightarrow \left( {1 - x} \right)\left( {1 - y} \right) = \frac{3}{{50}} \Leftrightarrow xy - x - y = - \frac{{47}}{{50}}\) (1)
Tương tự ta có \[B = {A_1}{A_2}{A_3}\]
\[ \Rightarrow P\left( B \right) = P\left( {{A_1}} \right) \cdot P\left( {{A_2}} \right) \cdot P\left( {{A_3}} \right) = x \cdot y \cdot 0,6 = 0,336 \Rightarrow xy = \frac{{14}}{{25}}\] (2)
Từ (1), (2) ta có \(\left\{ \begin{array}{l}x + y = \frac{3}{2}\\xy = \frac{{14}}{{25}}\end{array} \right.\).
Ta có \(C = \overline {{A_1}} {A_2}{A_3} + {A_1}\overline {{A_2}} {A_3} + {A_1}{A_2}\overline {{A_3}} \)
\( \Rightarrow P\left( C \right) = \left( {1 - x} \right)y \cdot 0,6 + x\left( {1 - y} \right) \cdot 0,6 + xy \cdot 0,4 = 0,6\left( {x + y} \right) - 0,8xy = 0,452.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\left( {5 + 2\sqrt 6 } \right)\left( {5 - 2\sqrt 6 } \right) = {5^2} - {\left( {2\sqrt 6 } \right)^2} = 25 - 24 = 1\).
Do đó:
\(P = {\left( {5 + 2\sqrt 6 } \right)^{2018}} \cdot {\left( {5 - 2\sqrt 6 } \right)^{2019}} = {\left[ {\left( {5 + 2\sqrt 6 } \right)\left( {5 - 2\sqrt 6 } \right)} \right]^{2018}} \cdot \left( {5 - 2\sqrt 6 } \right) = 5 - 2\sqrt 6 \).
Câu 2
Lời giải
Đáp án đúng là: A
Tần số lớn nhất là \(45\) nên nhóm chứa mốt là \(\left[ {54;56} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
