Câu hỏi:

26/12/2025 85 Lưu

(1,0 điểm) Giả sử sự tăng trưởng của một loại vi khuẩn trong quá trình nuôi cấy tuân theo công thức \(N\left( t \right) = {N_0} \cdot {e^{rt}}\), trong đó \({N_0}\) là số lượng vi khuẩn ban đầu, \(r\) là tỉ lệ tăng trưởng \(\left( {r > 0} \right)\), \(t\) là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 500 con và sau 2 giờ có 1 500 con. Hỏi sau bao lâu thì số lượng vi khuẩn ban đầu sẽ tăng lên gấp đôi?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số lượng vi khuẩn ban đầu \({N_0} = 500\) con.

Sau thời gian \(t = 2\) giờ có 1 500 con nên ta có \(1\,\,500 = 500 \cdot {e^{2r}}\)

\( \Leftrightarrow {e^{2r}} = 3 \Leftrightarrow 2r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{2}\).

Do đó, tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này là \(r = \frac{{\ln 3}}{2}\).

Gọi \(t\) là thời gian để số lượng vi khuẩn ban đầu tăng gấp đôi, tức là \(N\left( t \right) = 2{N_0}\).

Lại có \(N\left( t \right) = {N_0} \cdot {e^{rt}}\) nên ta có \(2{N_0} = {N_0} \cdot {e^{rt}} \Leftrightarrow {e^{rt}} = 2 \Rightarrow rt = \ln 2 \Rightarrow t \approx 1,26\) (giờ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[P = a\].             
B. \[P = {a^3}\].      
C. \[P = {a^4}\].                            
D. \[P = {a^5}\].

Lời giải

Đáp án đúng là: D

\[P = \frac{{{a^{\sqrt 3 + 1}} \cdot {a^{2 - \sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 - 2}}} \right)}^{\sqrt 2 + 2}}}} = \frac{{{a^{\sqrt 3 + 1 + 2 - \sqrt 3 }}}}{{{a^{\left( {\sqrt 2 - 2} \right)\left( {\sqrt 2 + 2} \right)}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}\].

Lời giải

a) Với \(a > 0,\,\,a \ne 1\), ta có:

\(M = \frac{{{a^{\frac{1}{5}}}\left( {{a^{\frac{3}{{10}}}} - {a^{ - \frac{1}{5}}}} \right)}}{{{a^{\frac{2}{3}}}\left( {{a^{\frac{1}{3}}} - {a^{ - \frac{2}{3}}}} \right)}} = \frac{{{a^{\frac{1}{5}}} \cdot {a^{ - \frac{1}{5}}}\left( {{a^{\frac{1}{2}}} - 1} \right)}}{{{a^{\frac{2}{3}}} \cdot {a^{ - \frac{2}{3}}}\left( {a - 1} \right)}}\)\( = \frac{{{a^{\frac{1}{2}}} - 1}}{{a - 1}}\)\( = \frac{{\sqrt a  - 1}}{{\left( {\sqrt a  - 1} \right)\left( {\sqrt a  + 1} \right)}}\)\( = \frac{1}{{\sqrt a  + 1}}\).

b) Năm 2025 ứng với \(t = 5\) nên có dân số thế giới là

\[P\left( 5 \right) = 7,795 \cdot {\left( {1 + 0,0105} \right)^5} \approx 8,213\] (tỉ người).

Năm 2030 ứng với \(t = 10\) nên có dân số thế giới là

\[P\left( {10} \right) = 7,795 \cdot {\left( {1 + 0,0105} \right)^{10}} \approx 8,653\] (tỉ người).

Câu 3

A. \(P = {x^{12}}\). 
B. \(P = {x^{10}}\). 
C. \(P = {x^{17}}\).                       
D. \(P = {x^{\frac{{17}}{{12}}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(0 < a < 1,\,0 < b < 1\).                     
B. \(0 < a < 1,\,b > 1\).                                        
C. \(a > 1,\,0 < b < 1\).                                   
D. \(a > 1,\,b > 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{3}{4}\).   
B. \(3\).                    
C. \(\frac{3}{2}\).                
D. \(\frac{1}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP