Câu hỏi:

26/12/2025 7 Lưu

Cho \(a > 0\)\(a \ne 1\). Tìm mệnh đề đúng trong các mệnh đề sau:        

A. \[{\log _a}x\] có nghĩa với mọi \(x\). 
B. \({\log _a}1 = a\)\({\log _a}a = 0\).        
C. \({\log _a}xy = {\log _a}x \cdot {\log _a}y\).                              
D. \[{\log _a}{x^n} = n{\log _a}x\,\,\left( {x > 0,\,n \ne 0} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có:

+) \[{\log _a}x\] có nghĩa khi và chỉ khi \(x > 0\), do đó đáp án A sai.

+) \({\log _a}1 = 0\), do đó đáp án B sai.

+) \({\log _a}xy = {\log _a}x + {\log _a}y\), do đó đáp án C sai.

+) \[{\log _a}{x^n} = n{\log _a}x\,\,\left( {x > 0,\,n \ne 0} \right)\], do đó đáp án D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Đáp án đúng là: B Vì \(MN{\rm{//}}M'N'\) nên \(\left( {MN,\,\,M'P'} \right) = \left( {M'N',\,M'P'} \right) = \widehat {N'M'P'} = 45^\circ \).  (ảnh 1)

Gọi \(E\) là trung điểm của \(BD\).

Khi đó ta có \(ME,\,\,NE\) lần lượt là đường trung bình của các tam giác \(BCD,\,\,ABD\).

Suy ra \(ME{\rm{//}}CD,\,NE{\rm{//}}AB\). Do đó, \(\left( {AB,\,CD} \right) = \left( {NE,\,ME} \right)\).

Ta có \(ME = \frac{{CD}}{2} = \frac{{2a}}{2} = a,\,\,NE = \frac{{AB}}{2} = \frac{{2a}}{2} = a\).

Áp dụng hệ quả của định lí côsin trong tam giác \(MNE\) ta có

\(\cos \widehat {MEN} = \frac{{M{E^2} + N{E^2} - M{N^2}}}{{2ME \cdot NE}} = \frac{{{a^2} + {a^2} - {{\left( {a\sqrt 3 } \right)}^2}}}{{2 \cdot a \cdot a}} = \frac{{ - 1}}{2}\).

Suy ra \(\widehat {MEN} = 120^\circ \).

Khi đó, \(\left( {NE,\,ME} \right) = 180^\circ - \widehat {MEN} = 180^\circ - 120^\circ = 60^\circ \).

Vậy \(\left( {AB,\,CD} \right) = 60^\circ \).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hì (ảnh 1)

a) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BC \subset \left( {ABCD} \right)\)\( \Rightarrow BC \bot SA\).

Và \(BC \bot AB\) (do \(ABCD\) là hình vuông).

Mà \(SA,AB \subset \left( {SAB} \right)\). Vậy \(BC \bot \left( {SAB} \right)\).

b) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BD \subset \left( {ABCD} \right)\)\( \Rightarrow SA \bot BD\).

Và \(BD \bot AC\) (do \(ABCD\) là hình vuông).

Mà \(SA,AC \subset \left( {SAC} \right)\).

Suy ra \(BD \bot \left( {SAC} \right)\).

Mặt khác ta có: \(BD \subset \left( {SBD} \right)\).

Vậy \(\left( {SAC} \right) \bot \left( {SBD} \right)\).

Câu 3

A. Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau.
B. Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì vuông góc với nhau.
C. Hai đường thẳng cùng song song với đường thẳng thứ ba thì có thể song song với nhau.
D. Hai đường thẳng cùng song song với đường thẳng thứ ba thì vuông góc với nhau.  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\).                                  
B. \({x^\alpha } \cdot {y^\beta } = {\left( {xy} \right)^{\alpha + \beta }}\).        
C. \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \cdot \beta }}\).                                               
D. \({\left( {xy} \right)^\alpha } = {x^\alpha } \cdot {y^\alpha }\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{a^{\frac{5}{7}}}\].                         
B. \[{a^{\frac{1}{6}}}\].      
C. \[{a^{\frac{7}{3}}}\].      
D. \[{a^{\frac{5}{3}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP