Câu hỏi:

26/12/2025 50 Lưu

Cho \(x,\,\,y\) là các số thực lớn hơn 1 thỏa mãn \({x^2} + 9{y^2} = 6xy\). Tính giá trị biểu thức \(M = \frac{{1 + {{\log }_{12}}x + {{\log }_{12}}y}}{{2{{\log }_{12}}\left( {x + 3y} \right)}}\).        

A. \[M = \frac{1}{3}\].                            
B. \[M = 1\].   
C. \[M = \frac{1}{2}\].                            
D. \(M = \frac{1}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có \(M = \frac{{1 + {{\log }_{12}}x + {{\log }_{12}}y}}{{2{{\log }_{12}}\left( {x + 3y} \right)}}\)\( = \frac{{1 + {{\log }_{12}}x + {{\log }_{12}}y}}{{{{\log }_{12}}{{\left( {x + 3y} \right)}^2}}} = \frac{{1 + {{\log }_{12}}x + {{\log }_{12}}y}}{{{{\log }_{12}}\left[ {\left( {{x^2} + 9{y^2}} \right) + 6xy} \right]}}\)

               \( = \frac{{1 + {{\log }_{12}}x + {{\log }_{12}}y}}{{{{\log }_{12}}\left( {6xy + 6xy} \right)}} = \frac{{1 + {{\log }_{12}}x + {{\log }_{12}}y}}{{{{\log }_{12}}\left( {12xy} \right)}} = \frac{{1 + {{\log }_{12}}x + {{\log }_{12}}y}}{{1 + {{\log }_{12}}x + {{\log }_{12}}y}} = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{a^2}b\].         
B. \[a{b^2}\].          
C. \[{a^2}{b^2}\].              
D. \[ab\].

Lời giải

Đáp án đúng là: D

Ta có \(\frac{{{{\left( {\sqrt[4]{{{a^3} \cdot {b^2}}}} \right)}^4}}}{{\sqrt[3]{{\sqrt {{a^{12}} \cdot {b^6}} }}}} = \frac{{{a^3} \cdot {b^2}}}{{\sqrt[3]{{{{\left( {{a^{12}} \cdot {b^6}} \right)}^{\frac{1}{2}}}}}}} = \frac{{{a^3} \cdot {b^2}}}{{\sqrt[3]{{{a^6} \cdot {b^3}}}}} = \frac{{{a^3} \cdot {b^2}}}{{{{\left( {{a^6} \cdot {b^3}} \right)}^{\frac{1}{3}}}}} = \frac{{{a^3} \cdot {b^2}}}{{{a^2} \cdot b}} = ab\).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hì (ảnh 1)

a) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BC \subset \left( {ABCD} \right)\)\( \Rightarrow BC \bot SA\).

Và \(BC \bot AB\) (do \(ABCD\) là hình vuông).

Mà \(SA,AB \subset \left( {SAB} \right)\). Vậy \(BC \bot \left( {SAB} \right)\).

b) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BD \subset \left( {ABCD} \right)\)\( \Rightarrow SA \bot BD\).

Và \(BD \bot AC\) (do \(ABCD\) là hình vuông).

Mà \(SA,AC \subset \left( {SAC} \right)\).

Suy ra \(BD \bot \left( {SAC} \right)\).

Mặt khác ta có: \(BD \subset \left( {SBD} \right)\).

Vậy \(\left( {SAC} \right) \bot \left( {SBD} \right)\).

Câu 3

A. \[{\log _7}\frac{{a + b}}{2} = \frac{1}{3}\left( {{{\log }_7}a + {{\log }_7}b} \right)\].                       
B. \[{\log _3}\frac{{a + b}}{7} = \frac{1}{2}\left( {{{\log }_3}a + {{\log }_3}b} \right)\].        
C. \[{\log _3}\frac{{a + b}}{2} = \frac{1}{7}\left( {{{\log }_3}a + {{\log }_3}b} \right)\].                       
D. \[{\log _7}\frac{{a + b}}{3} = \frac{1}{2}\left( {{{\log }_7}a + {{\log }_7}b} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[A'D\].               
B. \[AC\].                
C. \[BB'\].                            
D. \[AD'\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\).                                  
B. \({x^\alpha } \cdot {y^\beta } = {\left( {xy} \right)^{\alpha + \beta }}\).        
C. \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \cdot \beta }}\).                                               
D. \({\left( {xy} \right)^\alpha } = {x^\alpha } \cdot {y^\alpha }\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP