Tìm mệnh đề đúng trong các mệnh đề sau:
Tìm mệnh đề đúng trong các mệnh đề sau:
A. \(y = {a^x}\) với \(a > 1\) là hàm số nghịch biến trên \(\left( { - \infty \,;\, + \infty } \right)\).
B. Đồ thị các hàm số \(y = {a^x}\) và \(y = {\left( {\frac{1}{a}} \right)^x}\)với \(0 < a\), \(a \ne 1\) đối xứng với nhau qua trục \(Oy\).
C. Đồ thị hàm số \(y = {a^x}\) với \(0 < a\), \(a \ne 1\) luôn đi qua điểm \(\left( {a\,;\,1} \right)\).
Quảng cáo
Trả lời:
Đáp án đúng là: B
+) Hàm số \(y = {a^x}\) với \(a > 1\) là hàm số đồng biến trên \(\left( { - \infty \,;\, + \infty } \right)\) và với \(0 < a < 1\) thì hàm số nghịch biến trên \(\left( { - \infty \,;\, + \infty } \right)\) nên đáp án A và D sai.
+) Đồ thị hàm số \(y = {a^x}\) với \(0 < a\), \(a \ne 1\) luôn đi qua điểm \(\left( {1\,;\,\,a} \right)\) nên đáp án C sai.
+) Đồ thị các hàm số \(y = {a^x}\) và \(y = {\left( {\frac{1}{a}} \right)^x}\)với \(0 < a\), \(a \ne 1\) đối xứng với nhau qua trục \(Oy\) là mệnh đề đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có \(\frac{{{{\left( {\sqrt[4]{{{a^3} \cdot {b^2}}}} \right)}^4}}}{{\sqrt[3]{{\sqrt {{a^{12}} \cdot {b^6}} }}}} = \frac{{{a^3} \cdot {b^2}}}{{\sqrt[3]{{{{\left( {{a^{12}} \cdot {b^6}} \right)}^{\frac{1}{2}}}}}}} = \frac{{{a^3} \cdot {b^2}}}{{\sqrt[3]{{{a^6} \cdot {b^3}}}}} = \frac{{{a^3} \cdot {b^2}}}{{{{\left( {{a^6} \cdot {b^3}} \right)}^{\frac{1}{3}}}}} = \frac{{{a^3} \cdot {b^2}}}{{{a^2} \cdot b}} = ab\).
Lời giải

a) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BC \subset \left( {ABCD} \right)\)\( \Rightarrow BC \bot SA\).
Và \(BC \bot AB\) (do \(ABCD\) là hình vuông).
Mà \(SA,AB \subset \left( {SAB} \right)\). Vậy \(BC \bot \left( {SAB} \right)\).
b) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BD \subset \left( {ABCD} \right)\)\( \Rightarrow SA \bot BD\).
Và \(BD \bot AC\) (do \(ABCD\) là hình vuông).
Mà \(SA,AC \subset \left( {SAC} \right)\).
Suy ra \(BD \bot \left( {SAC} \right)\).
Mặt khác ta có: \(BD \subset \left( {SBD} \right)\).
Vậy \(\left( {SAC} \right) \bot \left( {SBD} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.