Câu hỏi:

26/12/2025 31 Lưu

Trong các mệnh đề sau, mệnh đề nào đúng?

A. Nếu một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia thì hai mặt phẳng vuông góc nhau.
B. Nếu hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì chúng song song với nhau.
C. Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này đều vuông góc với mặt phẳng kia.
D. Nếu hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì chúng vuông góc với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

+) Nếu một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia thì hai mặt phẳng vuông góc nhau, do đó đáp án A đúng.

+) Đáp án B sai vì hai mặt phẳng đó có thể trùng nhau.

+) Đáp án C sai vì giả sử ta chọn đường thẳng giao tuyến của hai mặt phẳng đã cho thì đường thẳng này nằm trong cả 2 mặt phẳng.

+) Đáp án D là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{a^2}b\].         
B. \[a{b^2}\].          
C. \[{a^2}{b^2}\].              
D. \[ab\].

Lời giải

Đáp án đúng là: D

Ta có \(\frac{{{{\left( {\sqrt[4]{{{a^3} \cdot {b^2}}}} \right)}^4}}}{{\sqrt[3]{{\sqrt {{a^{12}} \cdot {b^6}} }}}} = \frac{{{a^3} \cdot {b^2}}}{{\sqrt[3]{{{{\left( {{a^{12}} \cdot {b^6}} \right)}^{\frac{1}{2}}}}}}} = \frac{{{a^3} \cdot {b^2}}}{{\sqrt[3]{{{a^6} \cdot {b^3}}}}} = \frac{{{a^3} \cdot {b^2}}}{{{{\left( {{a^6} \cdot {b^3}} \right)}^{\frac{1}{3}}}}} = \frac{{{a^3} \cdot {b^2}}}{{{a^2} \cdot b}} = ab\).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hì (ảnh 1)

a) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BC \subset \left( {ABCD} \right)\)\( \Rightarrow BC \bot SA\).

Và \(BC \bot AB\) (do \(ABCD\) là hình vuông).

Mà \(SA,AB \subset \left( {SAB} \right)\). Vậy \(BC \bot \left( {SAB} \right)\).

b) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BD \subset \left( {ABCD} \right)\)\( \Rightarrow SA \bot BD\).

Và \(BD \bot AC\) (do \(ABCD\) là hình vuông).

Mà \(SA,AC \subset \left( {SAC} \right)\).

Suy ra \(BD \bot \left( {SAC} \right)\).

Mặt khác ta có: \(BD \subset \left( {SBD} \right)\).

Vậy \(\left( {SAC} \right) \bot \left( {SBD} \right)\).

Câu 3

A. \[{\log _7}\frac{{a + b}}{2} = \frac{1}{3}\left( {{{\log }_7}a + {{\log }_7}b} \right)\].                       
B. \[{\log _3}\frac{{a + b}}{7} = \frac{1}{2}\left( {{{\log }_3}a + {{\log }_3}b} \right)\].        
C. \[{\log _3}\frac{{a + b}}{2} = \frac{1}{7}\left( {{{\log }_3}a + {{\log }_3}b} \right)\].                       
D. \[{\log _7}\frac{{a + b}}{3} = \frac{1}{2}\left( {{{\log }_7}a + {{\log }_7}b} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[A'D\].               
B. \[AC\].                
C. \[BB'\].                            
D. \[AD'\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\).                                  
B. \({x^\alpha } \cdot {y^\beta } = {\left( {xy} \right)^{\alpha + \beta }}\).        
C. \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \cdot \beta }}\).                                               
D. \({\left( {xy} \right)^\alpha } = {x^\alpha } \cdot {y^\alpha }\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP