Câu hỏi:

26/12/2025 10 Lưu

(1,0 điểm) Trong năm 2020 (tính đến hết ngày 31/12/2020), diện tích rừng trồng mới của tỉnh \(A\) là 1 200 ha. Giả sử diện tích rừng trồng mới của tỉnh \(A\) mỗi năm tiếp theo đều tăng \(6\% \) so với diện tích rừng trồng mới của năm liền trước. Kể từ sau năm 2020, năm nào là năm đầu tiên tỉnh \(A\) có diện tích rừng trồng mới trong năm đó đạt trên 1 600 ha?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Diện tích rừng trồng mới của năm \(2020 + 1\)\(1200{\left( {1 + 6\% } \right)^1}\) .

Diện tích rừng trồng mới của năm \(2020 + 2\)\(1200{\left( {1 + 6\% } \right)^2}\) .

Diện tích rừng trồng mới của năm \(2020 + n\)\(1200{\left( {1 + 6\% } \right)^n}\) .

Ta có: \(1200{\left( {1 + 6\% } \right)^n} > 1600 \Leftrightarrow {\left( {1 + 6\% } \right)^n} > \frac{4}{3} \Leftrightarrow n > {\log _{1 + 6\% }}\frac{4}{3} \approx 4,94\).

Như vậy kể từ năm 2020 thì năm 2025 là năm đầu tiên diện tích rừng trồng mới đạt trên 1 600 ha.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Đáp án đúng là: B Vì \(MN{\rm{//}}M'N'\) nên \(\left( {MN,\,\,M'P'} \right) = \left( {M'N',\,M'P'} \right) = \widehat {N'M'P'} = 45^\circ \).  (ảnh 1)

Gọi \(E\) là trung điểm của \(BD\).

Khi đó ta có \(ME,\,\,NE\) lần lượt là đường trung bình của các tam giác \(BCD,\,\,ABD\).

Suy ra \(ME{\rm{//}}CD,\,NE{\rm{//}}AB\). Do đó, \(\left( {AB,\,CD} \right) = \left( {NE,\,ME} \right)\).

Ta có \(ME = \frac{{CD}}{2} = \frac{{2a}}{2} = a,\,\,NE = \frac{{AB}}{2} = \frac{{2a}}{2} = a\).

Áp dụng hệ quả của định lí côsin trong tam giác \(MNE\) ta có

\(\cos \widehat {MEN} = \frac{{M{E^2} + N{E^2} - M{N^2}}}{{2ME \cdot NE}} = \frac{{{a^2} + {a^2} - {{\left( {a\sqrt 3 } \right)}^2}}}{{2 \cdot a \cdot a}} = \frac{{ - 1}}{2}\).

Suy ra \(\widehat {MEN} = 120^\circ \).

Khi đó, \(\left( {NE,\,ME} \right) = 180^\circ - \widehat {MEN} = 180^\circ - 120^\circ = 60^\circ \).

Vậy \(\left( {AB,\,CD} \right) = 60^\circ \).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hì (ảnh 1)

a) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BC \subset \left( {ABCD} \right)\)\( \Rightarrow BC \bot SA\).

Và \(BC \bot AB\) (do \(ABCD\) là hình vuông).

Mà \(SA,AB \subset \left( {SAB} \right)\). Vậy \(BC \bot \left( {SAB} \right)\).

b) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BD \subset \left( {ABCD} \right)\)\( \Rightarrow SA \bot BD\).

Và \(BD \bot AC\) (do \(ABCD\) là hình vuông).

Mà \(SA,AC \subset \left( {SAC} \right)\).

Suy ra \(BD \bot \left( {SAC} \right)\).

Mặt khác ta có: \(BD \subset \left( {SBD} \right)\).

Vậy \(\left( {SAC} \right) \bot \left( {SBD} \right)\).

Câu 4

A. Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau.
B. Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì vuông góc với nhau.
C. Hai đường thẳng cùng song song với đường thẳng thứ ba thì có thể song song với nhau.
D. Hai đường thẳng cùng song song với đường thẳng thứ ba thì vuông góc với nhau.  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\).                                  
B. \({x^\alpha } \cdot {y^\beta } = {\left( {xy} \right)^{\alpha + \beta }}\).        
C. \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \cdot \beta }}\).                                               
D. \({\left( {xy} \right)^\alpha } = {x^\alpha } \cdot {y^\alpha }\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{\log _7}\frac{{a + b}}{2} = \frac{1}{3}\left( {{{\log }_7}a + {{\log }_7}b} \right)\].                       
B. \[{\log _3}\frac{{a + b}}{7} = \frac{1}{2}\left( {{{\log }_3}a + {{\log }_3}b} \right)\].        
C. \[{\log _3}\frac{{a + b}}{2} = \frac{1}{7}\left( {{{\log }_3}a + {{\log }_3}b} \right)\].                       
D. \[{\log _7}\frac{{a + b}}{3} = \frac{1}{2}\left( {{{\log }_7}a + {{\log }_7}b} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP