Câu hỏi:

26/12/2025 43 Lưu

Cho hình lập phương \(ABCD.A'BC'D'\). Hai đường thẳng vuông góc với nhau là        

A. \[BC,A'D'\].       
B. \[AB,DC\].         
C. \[AA',BB'\].                    
D. \[AB,AA'\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho hình lập phương \(ABCD.A'BC'D'\). Hai đường thẳng vuông góc với nhau là 	 (ảnh 1)

\(ABCD.A'BC'D'\) là hình lập phương nên ta có:

+) \[BC{\rm{//}}A'D'\] (do cùng song song với \(B'C'\));

+) \[AB{\rm{//}}DC\] (do \(ABCD\) là hình vuông);

+) \[AA'{\rm{//}}BB'\] (các cạnh bên);

+) \[AB \bot AA'\] (cạnh đáy và cạnh bên).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). (ảnh 1)

a) Ta có tam giác \(SAB\) đều cạnh \(a\) nên \(SI = \frac{{a\sqrt 3 }}{2}\).

Tứ giác \(IBCJ\) là hình chữ nhật nên \(IJ = BC = a\).

Tam giác \(SCD\) là tam giác vuông cân đỉnh \(S\) nên \(SJ = \frac{{CD}}{2} = \frac{a}{2}\).

Do đó, \(S{J^2} + S{I^2} = I{J^2}\,\,\left( { = {a^2}} \right)\), suy ra tam giác \(SIJ\) vuông tại \(S\).

Vậy \(SI \bot SJ\).

b) Vì tam giác \(SCD\) là tam giác cân đỉnh \(S\) nên \(SJ \bot CD\).

Do \(AB\,{\rm{//}}\,CD\) nên \(SJ \bot AB\)\(SI \bot SJ\) nên \(SJ \bot \left( {SAB} \right)\).

Chứng minh tương tự ta có \(SI \bot \left( {SCD} \right)\).

Câu 2

A. \(\frac{{2a}}{{1 + b}}\).                     
B. \(\frac{{1 + b}}{{2a}}\) .                    
C. \(\frac{b}{{2a}}\) .       
D. \(\frac{{1 - b}}{{2a}}\).

Lời giải

Đáp án đúng là: B

Ta có \({\log _9}10 = {\log _{{3^2}}}\left( {2 \cdot 5} \right) = \frac{1}{2}{\log _3}\left( {2 \cdot 5} \right) = \frac{1}{2}\left( {{{\log }_3}2 + {{\log }_3}5} \right)\).

Áp dụng công thức đổi cơ số ta có \({\log _2}3 = \frac{{{{\log }_3}3}}{{{{\log }_3}2}} = \frac{1}{{{{\log }_3}2}}\), suy ra \({\log _3}2 = \frac{1}{{{{\log }_2}3}} = \frac{1}{a}\).

Tương tự \({\log _2}5 = \frac{{{{\log }_3}5}}{{{{\log }_3}2}} \Rightarrow {\log _3}5 = {\log _2}5 \cdot {\log _3}2 = b \cdot \frac{1}{a} = \frac{b}{a}\).

Do đó, \({\log _9}10 = \frac{1}{2}\left( {\frac{1}{a} + \frac{b}{a}} \right) = \frac{{1 + b}}{{2a}}\).

Câu 3

A. \(\left( {ABCD} \right)\).                   
B. \(\left( {SAB} \right)\).                          
C. \(\left( {SAD} \right)\).                          
D. \(\left( {SAC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[30^\circ \].       
B. \[60^\circ \].      
C. \[90^\circ \].                                     
D. \[45^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({a^8}\).            
B. \({a^2}\).           
C. \({a^{\frac{7}{2}}}\).      
D. \({a^{\frac{9}{2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP