Cho \(x\) là số thực dương. Biểu thức \[\sqrt[4]{{{x^2}\sqrt[3]{x}}}\] được viết dưới dạng lũy thừa với số mũ hữu tỉ là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có \[\sqrt[4]{{{x^2}\sqrt[3]{x}}} = \sqrt[4]{{{x^2}{x^{\frac{1}{3}}}}} = \sqrt[4]{{{x^{\frac{7}{3}}}}} = {\left( {{x^{\frac{7}{3}}}} \right)^{\frac{1}{4}}} = {x^{\frac{7}{{12}}}}.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có \(y' = {\left( {{x^6}} \right)^\prime } = 6{x^5}\). Khi đó \(y'\left( { - 1} \right) = 6 \cdot {\left( { - 1} \right)^5} = - 6\).
Câu 2
A. Hàm số nghịch biến trên \[\mathbb{R}\].
B. Hàm số đồng biến trên \[\mathbb{R}\].
Lời giải
Đáp án đúng là: D
Quan sát hình vẽ, ta thấy đồ thị hàm số đi lên từ trái qua phải trên \(\left( {0; + \infty } \right)\) nên hàm số này đồng biến trên \(\left( {0; + \infty } \right).\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
