(1 điểm) Có bao nhiêu số tự nhiên \(x\) không vượt quá \[2023\] thỏa mãn
\({\log _2}\left( {\frac{x}{4}} \right)\log _2^2x \ge 0\)?
(1 điểm) Có bao nhiêu số tự nhiên \(x\) không vượt quá \[2023\] thỏa mãn
\({\log _2}\left( {\frac{x}{4}} \right)\log _2^2x \ge 0\)?
Quảng cáo
Trả lời:
Điều kiện: \(x > 0\).
Ta có \({\log _2}\left( {\frac{x}{4}} \right)\log _2^2x \ge 0\)\( \Leftrightarrow \left( {{{\log }_2}x - {{\log }_2}4} \right)\log _2^2x \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 0\\\left\{ \begin{array}{l}{\log _2}x - {\log _2}4 \ge 0\\{\log _2}x \ne 0\end{array} \right.\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\\left\{ \begin{array}{l}x \ge 4\\0 < x \ne 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x \ge 4\end{array} \right.\) (thỏa mãn điều kiện \(x > 0\)).
Vì \(x \in \mathbb{N},\,\,x \le 2023\) nên \(x \in \left\{ {1;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8;\,\,...;\,\,2023} \right\}\).
Vậy có \(2021\) số tự nhiên \(x\) thỏa mãn bài ra.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có \(y' = {\left( {{x^6}} \right)^\prime } = 6{x^5}\). Khi đó \(y'\left( { - 1} \right) = 6 \cdot {\left( { - 1} \right)^5} = - 6\).
Câu 2
A. Hàm số nghịch biến trên \[\mathbb{R}\].
B. Hàm số đồng biến trên \[\mathbb{R}\].
Lời giải
Đáp án đúng là: D
Quan sát hình vẽ, ta thấy đồ thị hàm số đi lên từ trái qua phải trên \(\left( {0; + \infty } \right)\) nên hàm số này đồng biến trên \(\left( {0; + \infty } \right).\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
