Câu hỏi:

16/01/2026 72 Lưu

Từ các chữ số  \[1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6\] có thể lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) là số cần tìm

Ta có \({a_6} \in \left\{ {1;\,3;\,5} \right\}\) và \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5} + {a_6}} \right) = 1\)

+ Với \({a_6} = 1\) thì \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5}} \right) = 2\) \( \Rightarrow \left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;3;6} \right\}\\{a_4};\,{a_5} \in \left\{ {4;\,5} \right\}\end{array} \right.\)

hoặc \(\left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;\,4;\,5} \right\}\\{a_4};\,{a_5} \in \left\{ {3;\,6} \right\}\end{array} \right.\).

+ Với \({a_6} = 3\) thì \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5}} \right) = 4\) \( \Rightarrow \left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;\,4;\,5} \right\}\\{a_4};\,{a_5} \in \left\{ {1;\,6} \right\}\end{array} \right.\)

hoặc \(\left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {1;\,4;\,6} \right\}\\{a_4};\,{a_5} \in \left\{ {2;\,5} \right\}\end{array} \right.\).

+ Với \({a_6} = 5\) thì \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5}} \right) = 6\) \( \Rightarrow \left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;\,3;\,6} \right\}\\{a_4};\,{a_5} \in \left\{ {1;\,4} \right\}\end{array} \right.\)

hoặc \(\left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {1;\,4;\,6} \right\}\\{a_4};\,{a_5} \in \left\{ {2;\,3} \right\}\end{array} \right.\).

Mỗi trường hợp có \(3!.2! = 12\) số thỏa mãn yêu cầu

Vậy có tất cả \(6.12 = 72\) số cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 216;                      
B. 284;                       
C. 278;                       
D. 254.

Lời giải

Đáp án đúng là: A

Ta xét khai triển \({\left( {\frac{3}{x} + 2x} \right)^4}\) (với \(x \ne 0\)), ta có:

\({\left( {\frac{3}{x} + 2x} \right)^4} = C_4^0.{\left( {\frac{3}{x}} \right)^4} + C_4^1.{\left( {\frac{3}{x}} \right)^3}.\left( {2x} \right) + C_4^2.{\left( {\frac{3}{x}} \right)^2}.{\left( {2x} \right)^2} + C_4^3.\left( {\frac{3}{x}} \right).{\left( {2x} \right)^3} + C_4^4.{\left( {2x} \right)^4}\)

\( = \frac{{81}}{{{x^4}}} + \frac{{216}}{{{x^2}}} + 216 + 96{x^2} + 16{x^4}\).

Vậy số hạng không chứa \[x\] trong khai triển là 216.

Câu 2

A. 6;                          
B. 3;                              
C. 5;                           
D. 1.

Lời giải

Đáp án đúng là: C

Ta có: \[{\left( {a + b} \right)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\].

Do vậy có tất cả 5 số hạng.

Câu 3

A. \(275\);                  
B. \(462\);                      
C. \(455\);                  
D. \(425\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - 14;\,\, - \frac{{41}}{2}} \right)\); 
B. \(\left( {14;\,\frac{{41}}{2}} \right)\);  
C. \(\left( {\frac{{41}}{2};\,\,14} \right)\);            
D. \(\left( {14;\,\, - \frac{{41}}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 2;\,\, - 2} \right)\);                        
B. \(\left( {2;\,\,2} \right)\);  
C. \(\left( {6;\,\,0} \right)\);                        
D. \(\left( {2;\, - 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];

B. \[243{x^5} + 405{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];

C. \[243{x^5} - 1620{x^4} + 4320{x^3} - 5760{x^2} + 3840x - 1024\];

D. \[243{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left| {\overrightarrow {MN} } \right| = \sqrt {13} \);                 
B. \(\left| {\overrightarrow {MN} } \right| = 5\);            
C. \(\left| {\overrightarrow {MN} } \right| = \sqrt {29} \);               
D. \(\left| {\overrightarrow {MN} } \right| = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP