Câu hỏi:

16/01/2026 42 Lưu

Góc giữa hai đường thẳng \(\Delta :4x - 3y + 6\) và \(d:x - 1 = 0\) là: \(\alpha  = ?\) (làm tròn đến độ)

A. \[37^\circ \];          
B. \[36^\circ \];              
C. \[35^\circ \];          
D. \[34^\circ \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Đường thẳng \(\Delta :4x - 3y + 6\) có vectơ pháp tuyến có \(\overrightarrow {{n_\Delta }}  = \left( {4; - 3} \right)\) và đường thẳng \(d:x - 1 = 0\) có vectơ pháp tuyến  \(\overrightarrow {{n_d}}  = \left( {1;0} \right)\).

Ta có: \[\cos \alpha  = \frac{{\left| {4.1 + ( - 3).0} \right|}}{{\sqrt {{4^2} + {{( - 3)}^2}} .\sqrt {{1^2} + {0^2}} }} = \frac{4}{5} \Rightarrow \alpha  \approx 37^\circ \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có :  \(C_n^0 + C_n^1 + C_n^2 = 11 \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = 11\,\,\left( {n \ge 2} \right)\)

\( \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)}}{2} = 11\) \( \Leftrightarrow \left[ \begin{array}{l}n = 4\\n =  - 5\end{array} \right.\) .

Do đó có \(n = 4\) thỏa mãn điều kiện.

Khi đó:

\({\left( {{x^3} + \frac{1}{{{x^2}}}} \right)^4} = {\left( {{x^3}} \right)^4} + 4.{\left( {{x^3}} \right)^3}.\frac{1}{{{x^2}}} + 6.{\left( {{x^3}} \right)^2}.{\left( {\frac{1}{{{x^2}}}} \right)^2} + 4.{x^3}.{\left( {\frac{1}{{{x^2}}}} \right)^3} + {\left( {\frac{1}{{{x^2}}}} \right)^4}\)

\( = {x^{12}} + 4{x^7} + 6{x^2} + \frac{4}{{{x^2}}} + \frac{1}{{{x^8}}}\).

Vậy hệ số của \({x^2}\) trong khai triển đã cho là 6.

Câu 2

A. 24;                        
B. 36;                            
C. 96;                         
D. 58.

Lời giải

Đáp án đúng là: A

Ta có:

\[{\left( {\frac{x}{2} + \frac{4}{x}} \right)^4} = C_4^0.{\left( {\frac{x}{2}} \right)^4} + C_4^1.{\left( {\frac{x}{2}} \right)^3}.\left( {\frac{4}{x}} \right) + C_4^2.{\left( {\frac{x}{2}} \right)^2}.{\left( {\frac{4}{x}} \right)^2} + C_4^3.\left( {\frac{x}{2}} \right).{\left( {\frac{4}{x}} \right)^3} + C_4^4.{\left( {\frac{4}{x}} \right)^4}\]

\[ = \frac{{{x^4}}}{{16}} + 2{x^2} + 24 + \frac{{128}}{{{x^2}}} + \frac{{256}}{{{x^4}}}\].

Vậy số hạng không chứa \[x\] trong khai triển đã cho là 24.

Câu 4

A. 12;                        
B. 18;                            
C. 20;                         
D. 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 6;                          
B. 3;                              
C. 5;                           
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 245;                      
B. 3 480;                        
C. 336;                       
D. 251.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow u  = \left( {3;1} \right)\); 
B. \(\overrightarrow u  = \left( {3; - 1} \right)\);                     
C. \(\overrightarrow u  = \left( { - 3;1} \right)\);       
D. \(\overrightarrow u  = \left( {1;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP