Câu hỏi:

16/01/2026 62 Lưu

Từ các chữ số \[0;{\rm{ }}1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}5\] có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số cần tìm có dạng \[\overline {abcd} \] với \[a,b,c,d \in A = \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5} \right\}\].

Vì \[\overline {abcd} \] là số chẵn \[ \Rightarrow \,\,d \in \left\{ {0;\,\,2;\,\,4} \right\}\]

+ Trường hợp 1: Nếu \[d = 0\] thì \(d\) có một cách chọn

\[a\] có 5 cách chọn (vì \(a\) được chọn từ một trong các số \(1;2;3;4;5\)).

\[b\] có 4 cách chọn (vì \(a \ne b\) nên \(b\) được chọn từ một trong các số \(1;2;3;4;5\) nhưng bỏ đi số mà \(a\) đã chọn).

\[c\] có 3 cách chọn (vì \(a \ne c;\,b \ne c\) nên \(c\) được chọn từ một trong các số \(1;2;3;4;5\) nhưng bỏ đi số mà \(a,b\) đã chọn).

Như vậy, ta có \[5.4.3.1 = 60\] số.

+ Trường hợp 2: Nếu \[d \ne 0\] thì \(d\) có \[2\] cách chọn là số 2 hoặc 4

\[a\] có 4 cách chọn (vì \(a\) được chọn từ một trong các số \(1;2;3;4;5\) bỏ đi số mà \(d\) đã chọn).

\[b\] có 4 cách chọn (vì \(a \ne b;b \ne d\) nên \(b\) được chọn từ một trong các số \(0;1;2;3;4;5\) nhưng bỏ đi số mà \(a,d\) đã chọn).

\[c\] có 3 cách chọn (vì \(a \ne c;\,b \ne c;d \ne c\) nên \(c\) được chọn từ một trong các số \(0;1;2;3;4;5\) nhưng bỏ đi số mà \(a,b,d\) đã chọn).

Như vậy, ta có \[2.4.4.3 = 96\] số.

Vậy có tất cả \[60 + 96 = 156\] số cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có :  \(C_n^0 + C_n^1 + C_n^2 = 11 \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = 11\,\,\left( {n \ge 2} \right)\)

\( \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)}}{2} = 11\) \( \Leftrightarrow \left[ \begin{array}{l}n = 4\\n =  - 5\end{array} \right.\) .

Do đó có \(n = 4\) thỏa mãn điều kiện.

Khi đó:

\({\left( {{x^3} + \frac{1}{{{x^2}}}} \right)^4} = {\left( {{x^3}} \right)^4} + 4.{\left( {{x^3}} \right)^3}.\frac{1}{{{x^2}}} + 6.{\left( {{x^3}} \right)^2}.{\left( {\frac{1}{{{x^2}}}} \right)^2} + 4.{x^3}.{\left( {\frac{1}{{{x^2}}}} \right)^3} + {\left( {\frac{1}{{{x^2}}}} \right)^4}\)

\( = {x^{12}} + 4{x^7} + 6{x^2} + \frac{4}{{{x^2}}} + \frac{1}{{{x^8}}}\).

Vậy hệ số của \({x^2}\) trong khai triển đã cho là 6.

Câu 2

A. 24;                        
B. 36;                            
C. 96;                         
D. 58.

Lời giải

Đáp án đúng là: A

Ta có:

\[{\left( {\frac{x}{2} + \frac{4}{x}} \right)^4} = C_4^0.{\left( {\frac{x}{2}} \right)^4} + C_4^1.{\left( {\frac{x}{2}} \right)^3}.\left( {\frac{4}{x}} \right) + C_4^2.{\left( {\frac{x}{2}} \right)^2}.{\left( {\frac{4}{x}} \right)^2} + C_4^3.\left( {\frac{x}{2}} \right).{\left( {\frac{4}{x}} \right)^3} + C_4^4.{\left( {\frac{4}{x}} \right)^4}\]

\[ = \frac{{{x^4}}}{{16}} + 2{x^2} + 24 + \frac{{128}}{{{x^2}}} + \frac{{256}}{{{x^4}}}\].

Vậy số hạng không chứa \[x\] trong khai triển đã cho là 24.

Câu 4

A. 12;                        
B. 18;                            
C. 20;                         
D. 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 6;                          
B. 3;                              
C. 5;                           
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 245;                      
B. 3 480;                        
C. 336;                       
D. 251.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow u  = \left( {3;1} \right)\); 
B. \(\overrightarrow u  = \left( {3; - 1} \right)\);                     
C. \(\overrightarrow u  = \left( { - 3;1} \right)\);       
D. \(\overrightarrow u  = \left( {1;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP